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Number system (GNS)

A lattice (Zd);

a radix L ∈ Zd×d ;

an alphabet A ⊂ Zd containing zero.

De�nition

The pair (L,A) is a number system (GNS) in Zd if every element

x ∈ Zd has a unique representation of the form

x =
N∑

k=0

Lkak , ak ∈ A.

Note: The binary and the decimal system are not GNS since they

do not allow to represent negative numbers. (−2, {0, 1}) is a GNS

in Z and so is (3, {−1, 0, 1}).
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Necessary conditions

The radix L must be expansive, i.e. ρ(L−1) < 1 (Vince, 1993),

the alphabet A must be a complete residue system modulo L,

det(L− I ) 6= ±1 (the �unit condition�).
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Classical question: Given a radix L ∈ Zd×d , does there exist an

alphabet such that (L,A) is a GNS?

Theorem (Steidl, 1989; Kátai, 1994)

Let β ∈ Z[i]. Then there exists an alphabet A such that (β,A) is a

GNS if and only if |β| 6= 1, |β − 1| 6= 1. The same holds in OK

where K is any imaginary quadratic �eld.

The used digits lie in a parallelogram around the origin.

Theorem (Germán, Kovács, 2007)

If ρ(L−1) < 1/2, then there always exists an alphabet such that

(L,A) is a GNS.

They use the dense alphabet, i.e. the smallest representative (in a

certain vector norm) from every congruence class.

Reminder: ρ(L−1) < 1 is a necessary condition.
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Sparse alphabets

Question 1: Given a radix L ∈ Zd×d , how many alphabets for this

radix do exist?

So far known:

Radix is not expansive or the unit condition fails =⇒ there is

no such alphabet.

For −2 in Z, only the alphabets {0, 1} and {0,−1} are
suitable.

Similarly, for −1+ i in Z[i] there are only four good alphabets.

Matula, 1982: In Z, for every β with |β| ≥ 3 there are

in�nitely many alphabets.

Block diagonal radices
(
L1 0
0 L2

)
are easy to handle. (The

sublattices can be represented independently � Kovács, 2014

and also Indlekofer, Kátai, Racskó, 1993, etc.)
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Sparse alphabets

Our result:

Theorem

Let L be an operator on a d-dimensional lattice satisfying

ρ(L−1) ≤ 1/2 for which 2 is not an eigenvalue. There always exist

in�nitely many GNSs with radix L except for the case d ≤ 2.where

d = 2 and L has complex eigenvalues (where we do not know), and

for the case of radix −2 in Z, where only two GNSs exist.

Note: Except for dimension d = 2, the assumptions are weaker

than the assumptions of the theorem of Germán and Kovács.

One of the main ingredients:

Proposition

If L is block-triangular, L =
(
L1 C
0 L2

)
, and for L1 and L2 there exists

one GNS, then for L there exist in�nitely many GNSs.
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Sparse alphabets

Question 2: Can all the digits be far away from the origin?

De�nition

Given a radix L ∈ Zd×d , a sequence of alphabets (An)n∈N is called

a family of arbitrarily sparse alphabets if for any given ball B
around the origin, there exists an nB such that for n ≥ nB we have

An ∩ B = {0}.

Equivalently we can require that for any �nite 0 /∈ S ⊂ Zd , the

alphabets An do not use any digits from S for n ≥ nS .

If (L,An) is a GNS for every n, we have a family of arbitrarily
sparse GNSs.
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Sparse alphabets

The �nal result:

Theorem

Suppose that ρ(L−1) ≤ 1/2 and 2 is not an eigenvalue of L. Then

there exists a family of arbitrarily sparse GNSs except for the case

when every eigenvalue of L is either an integer or a non-real

algebraic number of degree 2, and has geometric multiplicity 1.

Problems arise only if all factors of the characteristic polynomial

have degree less than 3.

Again, part of the proof uses the block-triangularisable matrices.

But we need the �building stones�.
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Sparse alphabets

The di�cult part:

Theorem

Let L ∈ Zd×d such that

ρ(L−1) < 1/2, i.e. all eigenvalues of L are bigger than 2;

L is diagonalizable over C;

the characteristic polynomial of L is f k for some k ∈ N and f
is irreducible over Q;

either d ≥ 3 or L has real eigenvalues and d = 2.

Then there exists a family of arbitrarily sparse GNSs with radix L.

It is easy to construct a sequence of vector norms ‖ · ‖n such that

the ‖ · ‖n-dense alphabet An gives a GNS for every n. The problem

is that quite often all these alphabets are in fact the same.
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Suppose a regular expansive matrix L ∈ Zd×d is diagonalisable over C. Then
the following statements are equivalent:

(A) For a basis B let us denote by An the dense alphabet with respect to the

vector norm de�ned as ‖x‖(BDn)
∞ :=

∥∥(BDn)
−1x

∥∥
∞ where

Dn := diag(1, n, . . . , n). With this notation, the eigenbasis B of L can be
chosen so that the sequence of alphabets An forms a family of arbitrarily
sparse alphabets with respect to L.

(B) The eigenbasis B can be chosen so that for every congruence class
Ta := LZd + a except for T0 the expression |[B−1z]1| does not attain a
minimum on Ta (it only has an in�mum).

(C) There exists an eigenvector b of LT such that for every congruence class
Ta := LZd + a except for T0 the expression |bT z | does not attain a
minimum on Ta (it only has an in�mum).

(D) There exists an eigenvector b of LT such that if bT z = 0 for z ∈ Zd , then
z ≡ 0 modulo L. Further, the set {bT z : z ∈ Zd} is either dense in C or a
dense subset of R.

(E) There exists an eigenvector b of LT whose coordinates are linearly
independent over Q. Further, either d ≥ 3 or d = 2 and L has only real
eigenvalues.

(F) The characteristic polynomial of L is in the form f k where f is some
irreducible integer polynomial. Further, either d ≥ 3 or d = 2 and L has
only real eigenvalues.



Starting point:

Theorem (Germán, Kovács, 2007)

If ρ(L−1) < 1/2, then a GNS always exists.

Results:

Theorem

Suppose that ρ(L−1) ≤ 1/2 and 2 is not an eigenvalue of L. There

always exist in�nitely many GNSs with radix L except for the case

where d = 2 and L has complex eigenvalues (where we do not

know), and the case of radix −2 in Z, where only two GNSs exist.

Theorem

Suppose that ρ(L−1) ≤ 1/2 and 2 is not an eigenvalue of L. Then

there exists a family of arbitrarily sparse GNSs except for the case

when every eigenvalue of L is either an integer or a non-real

algebraic number of degree 2, and has geometric multiplicity 1.



GNSs in lattices
In�nitely many GNSs with the same radix

Sparse alphabets

Thank you for your attention!

J. Krásenský, A. Kovács In�nite families of number systems
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