
Numeration 2018

22-25 May 2018
Paris

France



Table of contents

Invited talks (Edita Pelantová, Robert F. Tichy) 3
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Ito alpha-continued fractions and matching, Langeveld Niels [et al.] 29

The sum-of-digits function of linearly recurrent number systems and almost
primes, Madritsch Manfred 31

Constructing invariant densities for random systems, Maggioni Marta [et al.] 33

Some complexity results in the theory of normal numbers, Airey Dylan [et
al.] 36

Mobius Orthogonality for automatic sequences and beyond, Müllner Clemens [et
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Invited talks

On spectra of numbers

Edita Pelantová
Czech Technical University in Prague

For a given base β ∈ C of modulus > 1 and a finite alphabet A ⊂ C, we consider the set

XA(β) =
{ n∑

k=0

akβ
k : n ∈ N, a0, a1, . . . , an ∈ A

}
,

called (β,A)-spectrum.
We begin with the classical case where the base β is real and the alphabet A is subset

of Z. We review recent results on topological properties of the spectra. If β is a Pisot num-
ber, we discuss also geometrical properties of spectra and properties of symbolic sequences
associated to XA(β). Then we concentrate on (β,A)-spectra where β or A are complex.
We motivate the study of complex spectra by questions comming from modeling of qua-
sicrystals and from on-line algorithms for arithmetics in the complex field. We provide a
list of results for complex spectra. It is modest and wide open to further research.

Normality, Computability and Discrepancy

Robert F. Tichy
Graz University of Technology

We give a survey on recent developments in the theory of normal numbers. In par-
ticular algorithms for the construction of absolutely normal numbers are established and
analyzed. This includes normality with respect to classical radix system as well as with
respect to Pisot numeration systems and continued fraction expansions. It seems that
there is a tradeoff between the computational complexity of the algorithms and the speed
of convergence to normality (measured by the discrepancy of the corresponding lacunary
sequences). In paricular, constructions of Sierpinski, Turing, Schmidt and Levin are inves-
tigated in detail. Furthermore, various probabilistic limit laws for discrepancies of related
sequences are established. This explains the statistical nature of normality and lacunarity.
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Establishing and maintaining databases of self-affine tiles

Christoph Bandt (Greifswald, Germany), Dmitry Mekhontsev (Novosibirsk, Russia)

Self-affine graph-directed constructions (graph-IFS for short) include Rauzy-type tiles
obtained from substitutions as well as Penrose-type tiles obtained from cut-and-project
schemes. A projection approach based on mappings was implemented on computer by
the second author to find large lists of new examples. Sometimes, especially in the fractal
case, such lists become so extensive that careful visual inspection is impossible. Thus the
computer must eliminate equivalent datasets and determine properties of the examples
which can be used to select the most interesting specimen. We describe algorithms for
the search as well as for the management of the database. The package is available at
https://ifstile.com.

Our setup is a graph-IFS given by an expanding integer matrix M and integer trans-
lations in high-dimensional space. Tiles, or fractal attractors, are studied in a two-
dimensional invariant subspace of M. Moreover, there can be a discrete symmetry group S
which commutes with M, the simplest symmetry being s−(x) = −x. Our figure shows a few
modifications which are obtained from the Rauzy substitution matrix M with appropriate
choice of translations and adding s− to some of the contraction maps.

Figure 1: Simple modifications of the Rauzy tile.

The search for new examples is performed by a random walk on the parameter space
of integer translations and discrete symmetries, while the given M and graph structure
of the IFS remain fixed. The main algorithmic ingredient is a check for the open set
condition of the graph-IFS which corresponds to the Arnoux-Ito coincidence property in
the substitution approach. In contrast to the algorithms described in the monograph of
Siegel and Thuswaldner (2010), we use only one automaton which we call the neighbor
graph of the IFS. It describes in a canonical way the dynamical boundary of the given
graph-IFS as a new graph-IFS.
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To eliminate equivalent datasets from our list, we calculate various properties for each
new dataset. Parameters of the neighbor graph, like number of vertices and edges, can be
taken as invariants. The boundary dimension(s) and certain moments of the equidistri-
bution on the tiles form other invariants. Topological properties can be calculated from
the neighbor graph. The list of data sets can be sorted with respect to any property, and
examples with desired properties can be selected.

In the talk, mathematical background will be given, and experiments with Rauzy-type
fractals will be demonstrated.
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Anne Bertrand Mathis
Université de Poitiers
anne.bertrand@math.univ-poitiers.fr

On the βexpansion of integers of Z [β].Connection
with the selfsimilar tilings
Let β be an unimodular Pisot number of degree d and let Z [β] be the set{
u1β

d−1 + ...+ ud;u1, ..., ud ∈ Z
}
. The βexpansions of the numbers of Z [β]

are finite or ultimately periodic.
It is wellknown that if the β expansion of 1 is finite:
1) Every number of Z [β] admits a finite β−expansion (we say that β

verifies the property F ).
2) 0 is an interior point (in Rd−1) of the fundamental tile of the Rauzy’s

selfsimilar tiling.
We prove that if the β expansion of 1 is a1...ahb1...bkb1...bk... where h+k =

d (i.e. β do not has complementary values) then
1) Every numbers of Z [β] admits either a finite expansion or an expansion

ending by b1...bkb1...bk... (we says that β verifies the property F ?).
2) 0 is an interior point (in Rd−1) of the union of two tiles disjoints in

measure: the fundamental tile and another tile related to b1...bk.
Looking at expansions in negative base −β we say that β verifies the

property F− if all numbers of Z [β] admits a finite −β expansion. We say that
β verifies the property F−? if there exists a periodic sequence c1...clc1...cl...
such that all numbers of Z [β] admits either a finite −β expansion or an
expansion ending by c1...clc1...cl....

Now consider the periodic -β tiling and the selfsimilar −β tiling of Rd−1,
who are simultaneously simple or multiple. We prove that

1) If β verifies the property F− then the autosimilar −β tiling is simple
and 0 is an interior point of the fundamental tile of Rd−1.

2) If β verifies the property F−?then the autosimilar −β tiling is simple
and 0 is an interior point of the union of two tiles of Rd−1 : the fundamental
tile and another tile related to c1...clc1...cl.....

Examples: the −β tilings associated with quadratic unimodular numbers
or with Tribonacci number are simple and it is also the case for those of Pisot
number for wich the property F− has been proved.
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INTEGER MULTIPLIERS OF REAL POLYNOMIALS WITHOUT

NONNEGATIVE ROOTS

HORST BRUNOTTE

For a polynomial f with real coefficients and positive leading coefficient the quantities

δ(f) = inf {deg(g) : g ∈ R[X], gf ∈ R>0[X]}
and

δ0(f) = inf {deg(g) : g ∈ R[X] \ {0} , gf ∈ R≥0[X]}
have been introduced by J.-P. Borel [1]. It was shown by E. Meissner [4] and A. Durand
(see [1, Théorème 2]) that δ(f) is finite if and only if f does not have a real nonnegative root;
furthermore, δ0(f) is finite if and only if f does not have a positive root. Moreover, given a
polynomial f ∈ R[X] with positive leading coeffient, but without a real nonnegative root, a monic
polynomial t ∈ R[X] with the properties

tf ∈ R≥0[X] and deg(g) = δ0(f)

can effectively be computed; such a polynomial t is sometimes called a δ0-multiplier of f . The
analogous statement holds for f with positive leading coeffient and without a real positive root.
We refer the reader to [3, 2] where also some more historical comments on theses quantities and
their relations to algebraic number theory and distribution theory are given.

Having in mind these results, we here consider the set

F = {f ∈ R[X] : f monic and f does not have a root in [0,∞)} ,
and for f ∈ F we ask for the quantities

ϕ(f) = inf {deg(t) : t ∈ Z[X], t monic and tf ∈ R>0[X]}
and

ϕ0(f) = inf {deg(t) : t ∈ Z[X], t monic and tf ∈ R≥0[X]} .
Trivially, we have

δ0(f) ≤ ϕ0(f) and δ(f) ≤ ϕ(f) .

We show that monic polynomials s, t ∈ Z[X] with the properties

tf ∈ R≥0[X] and sf ∈ R>0[X]

can effectively be computed thereby giving upper bounds for the constants ϕ0(f) and ϕ(f).

References
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On the magic of some families of fractal dendrites

Ligia L. Cristea
Institute for Mathematics and Scientific Computing,

University of Graz, Austria
(FWF-project P27050-N26)

Abstract

An n × n pattern is obtained by dividing the unit square into n × n
congruent smaller sub-squares and colouring some of them in black (which
means that they will be cut out), and the rest in white.

Sierpiński carpets are planar fractals that originate from the “classical”
Sierpiński carpet. They are constructed in the following way: one starts with
the unit square, divides it into n×n congruent smaller sub-squares and cuts
out m of them, corresponding to a given n×n pattern (also called the gener-
ator of the Sierpiński carpet). This construction step is then repeated with
all the remaining sub-squares ad infinitum. The resulting object is a self-
similar fractal of Hausdorff and box-counting dimension log(n2−m)/ log(n),
called a Sierpiński carpet.

By using special patterns, which we called “labyrinth patterns”, we
create and study a special class of carpets, called labyrinth fractals [1].
Labyrinth fractals are dendrites, i.e., connected and locally connected com-
pact hausdorff spaces that contain no simple curves. Under certain con-
ditions on the patterns one obtains objects with some “magic” properties.
First, we study the self-similar case. Already in this “simplest” case one
needs results from several areas of mathematics (topology, combinatorics,
linear algebra, curves theory, graph theory) to establish the main results. An
important role is played here by the path matrix of a pattern or a labyrinth
set. This is in fact the matrix of a subsitution and is, for an important class
of labyrinth patterns, primitive [2].

As a next step, we introduce and study mixed labyrinth fractals [3],
which are not self-similar. It is interesting to see here which properties are
inherited from the self-similar case, and which are not.

The results obtained show how by an appropriate choice of the labyrinth
patterns, one can obtain . . . almost anything [4].
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In very recent research [5] we study an even more general class, called
supermixed labyrinth fractals, and solve a conjecture on mixed labyrinth
fractals. Every time we pass to a more general class, it was necessary to
introduce new objects and tools and use new techniques for our proofs.

Wild labyrinth fractals are a further generalisation . . .
It is worth mentioning that some of our results on labyrinth fractals have

already been used by physicists in their research and construction of pro-
totypes. Moreover, we are aware that these objects are suitable as future
models for certain crystals, as other recent research in physics shows.

The results stem from joint work with Bertran Steinsky and Gunther
Leobacher.

References
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MULTIPLICATIVE DEPENDENCE OF SHIFTED
ALGEBRAIC NUMBERS

ARTŪRAS DUBICKAS

Given n ≥ 2 non-zero complex numbers z1, z2, . . . , zn, we say that
they are multiplicatively dependent if there exists a non-zero integer
vector (k1, k2, . . . , kn) ∈ Zn for which

zk11 z
k2
2 · · · zknn = 1.

Otherwise (if there is no such non-zero integer vector (k1, k2, . . . , kn)),
we say that the numbers z1, z2, . . . , zn are multiplicatively independent.

Let α1, α2, . . . , αn be n pairwise distinct algebraic numbers. In [1],
we show that the numbers

α1 + t, α2 + t, . . . , αn + t

are multiplicatively independent for all sufficiently large positive inte-
gers t. More generally,

Theorem 1. Let α1, α2, . . . , αn be pairwise distinct algebraic numbers,
and let d = [Q(α1, α2, . . . , αn) : Q]. Then, there is a positive constant
C = C(n, α1, α2, . . . , αn) such that, for any algebraic integer t of degree

at most |t|1/(nd+1)
, where |t| ≥ C (here |t| is the largest modulus of the

conjugates of t over Q), the algebraic numbers α1 + t, α2 + t, . . . , αn + t
are multiplicatively independent.

A more general approach, with rational functions instead of transla-
tions αi + t, has been considered in [2].

In [1], for a pair (a, b) of distinct integers a < b, we also study how
many pairs (a + t, b + t) are multiplicatively dependent when t runs
through the set integers Z. Assuming the ABC conjecture, we show
that there exists a constant C0 such that for any pair (a, b) ∈ Z2, a < b,
there are at most C0 values of t ∈ Z for which the pairs (a+ t, b+ t) are
multiplicatively dependent. (Without ABC, the bound on the number
of such t ∈ Z depends on the number of distinct prime divisors of b−a.)

2010 Mathematics Subject Classification. 11N25, 11R04, 11D61.
Key words and phrases. Multiplicative dependence, multiplicative independence,

Pillai’s equation, ABC conjecture.
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For a pair (a, b) ∈ Z2 with difference b− a = 30, we show that there
are 13 values of t ∈ Z for which the pairs (a+t, b+t) are multiplicatively
dependent, namely,

(−15, 15), (−1, 29), (−29, 1), (1, 31), (−31,−1), (−5, 25), (−25, 5),

(−3, 27), (−27, 3), (2, 32), (−32,−2), (6, 36), (−36,−6).

We conjecture that 13 is the largest number of such translations for
any such pair (a, b) ∈ Z2, a < b, and that the number 13 is attained
only when the difference b− a equals 30. This was proved for all pairs
(a, b) with difference at most 1010.

This research was funded by the European Social Fund according to
the activity Improvement of researchers qualification by implementing
world-class R&D projects of Measure No. 09.3.3-LMT-K-712-01-0037.
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Representations of palindromes in the Fibonacci

word

Anna E. Frid

Abstract

We continue our study of palindromes in Sturmian words in terms
of Ostrowski representations of their ends. In the previous preprint,
we used the link between them to prove that every Sturmian word
with an unbounded directive sequence contains a factor which cannot
be decomposed to a concatenation of a given number of palindromes.
However, for the case of bounded directive sequence, the only exist-
ing proof of this property is still the non-constructive one dated 2013.
So, in this study we start considering in detail palindromes in the
Fibonacci word in terms of the (Lekkerkerker-)Zeckendorf representa-
tions of their ends. In particular, we prove an upper bound for the
number of palindromes necessary to construct the Fibonacci prefix of
length n and conjecture which prefixes are the shortest with a given
number of palindromes.

The palindromic length of a finite word u is the minimal number Q of
palindromes P1, . . . , PQ such that u = P1 · · · PQ.

Conjecture 1. In every infinite word which is not ultimately periodic, the
palindromic length of factors is unbounded.

The conjecture was stated in 2013 by Puzynina, Zamboni and the author
[5] and was proved in the same paper for the case when the infinite word is
k-power-free for some k. To prove the conjecture at least for Sturmian words
which are not k-power-free, in the previous paper [4] the author managed
to express an occurrence of a palindrome in a characteristic Sturmian word
in terms of the Ostrowski representations of its ends. The first result of this
abstract is a new, simplified and updated, version of the respective theorem,
which we will formulate after introducing the notation.

As usual, we use in this paper the classical construction of characteristic
Sturmian words related to a directive sequence (d0, d1, . . . , dn, . . .), where
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di ≥ 1. Given a directive sequence, the standard sequence (sn) of words on
the binary alphabet {a, b} is defined as follows:

s−1 = b, s0 = a, sn+1 = sdn
n sn−1 for all n ≥ 0. (1)

The word sn is called also the standard word of order n. The infinite word
w = limn→∞ sn is called a characteristic Sturmian word associated with a
sequence (di).

Note that to get all possible Sturmian words, we also need to allow
d0 = 0, but due to the symmetry between a and b, we can restrict ourselves
to the case of d1 > 0.

Denote the length of sn by qn; then, clearly,

q−1 = q0 = 1, qn+1 = dnqn + qn−1 for all n ≥ 0.

In the Ostrowski numeration system [7] associated with the sequence (di), a
non-negative integer N < qj+1 is represented as

N =
∑

0≤i≤n

kiqi, (2)

where 0 ≤ ki ≤ di for i ≥ 0, and for i ≥ 1, if ki = di, then ki−1 = 0. Such a
representation of N is unique up to leading zeros; we use the notation N =
kn · · · k1k0[o]. Everywhere in the text, we will not distinguish representations
which differ only by leading zeros.

In many cases, including ours, it is reasonable to consider more general
legal decompositions N =

∑
0≤i≤n kiqi, where 0 ≤ ki ≤ di for i ≥ 0 (but the

second restriction from the definition of the Ostrowski representation is not
imposed). A number can admit several legal representations, including the
Ostrowski one. A legal representation of N is denoted by N = kn · · · k1k0

(without [o] at the end, reserved for the Ostrowski version).

Proposition 1. [4] For all k0, . . . , kn such that ki ≤ di, the word skn
n s

kn−1

n−1 · · · sk0
0

is a prefix of w.

The following statement is an updated and simplified version of Theorem
2 from [4].

Theorem 1. Let w be a characteristic Sturmian word corresponding to the
directive sequence (dn), and w(i..j] = w[i + 1] . . . w[j] be a palindrome. De-
note the Ostrowski representation of i as i = xn · · · xm · · · x0[o]; note that it

10 sciencesconf.org:numeration2018:196004



may start with several leading zeros. Then there exist a legal representation
of j given by

j = xn · · ·xm+1ym · (dm−1 − xm−1) · · · (d0 − x0),

where 0 ≤ m ≤ n and xm < ym ≤ dm.

As a classical example, consider the directive sequence (1, 1, 1, . . .). It
corresponds to the famous Fibonacci word defined by its prefixes s0 = a,
s1 = s0s−1 = ab, s2 = s1s0 = aba, s3 = s2s1 = abaab, etc.:

w = abaababaabaababaababa · · · .

The lengths qi = |si| are Fibonacci numbers, and the respective numeration
system is the Fibonacci, or Zeckendorf, one [6, 8]: it corresponds to the
greedy decomposition of a number N to a sum of Fibonacci numbers Fn,
starting from F0 = 1, F1 = 2.

Consider the palindrome w(12..13] = w[13] = b in the Fibonacci word.
The Ostrowski representation of 12 is 12 = 10101[o]. Taking m = 1 and
applying the procedure from the previous theorem, we increase the second-to
last symbol of the representation from 0 to 1 (this is the only possible option
in the Fibonacci case) and invert the last symbol. So, get the representation
10110 = 13 = 100000[o].

For the palindrome w(5, 14] = abaabaaba, we take the Ostrowski repre-
sentation of 5 with a leading zero: 5 = 1000[o] = 01000[o]. Now we add 1 to
the first zero of this long representation and invert everything which follows.
It gives the representation 10111 = 100001[o] = 14.

The following statement is partially obtained by a computer case study.

Proposition 2. The smallest lengths of prefixes of the Fibonacci word not
decomposable as a concatenation of K palindromes, K = 1, . . . , 6, are, in
the Ostrowski representation, respectively 10 = 2, 10001 = 9, 100001010,
100100010001, 100010001000010, 100100100100100101.

Note that the same result had been already known to Bucci and Ri-
chomme in 2016 [2]. However, more data we got with this Ostrowski tech-
nique allows to prove by induction at least one infinite statement on the
palindromic length of prefixes of the Fibonacci word.

Proposition 3. For every k ≥ 3, all prefixes of the Fibonacci word of length
smaller than (100)2k−1101 can be decomposed as a concatenation of at most
2k palindromes.
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The result would be complete if we manage to prove the following con-
jecture.

Conjecture 2. For every k ≥ 1, the prefix of the Fibonacci word of length
(100)2k−1101 cannot be decomposed as a concatenation of at most 2k palin-
dromes.

We proved that 2k + 1 palindromes are enough for this word, so, it
remains just to prove that this is the minimal possible value.

The analogous conjecture for the odd number 2k +1 of palindromes will
probably mention the critical length (100)2k010 starting from some k.
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RANDOM HOMOGENEOUS BETA-EXPANSIONS AND

SELF-SIMILAR MEASURES

KEVIN G. HARE

This talk will discuss joint work with Kathryn Hare and Sascha Troscheit. Let
β ∈ (1, 2) and consider the expansion

x =
∞∑

j=1

ajβ
−j

where aj ∈ {0, 1}. Then a1a2a3 · · · is a beta-expansion for x. Beta-expansions, and
their associated self-similar measures are well studied within the literature.

In this talk we consider a variation of the classical beta-expansion, one that is
random homogeneous. As a simple example, let S1 and S2 be finite sets. Consider
the set K of all x such that

x =
∞∑

j=1

a
(i)
j β−j

where a
(i)
j ∈ Sbi where the bi are choosen randomly from {1, 2}. We see that if

aj = 1 for all j then K would be the set of allowable beta expansions with digit set
S1. Similarly if aj = 2 for all j, then K would be based on digit set S2. As we are
choosing aj randomly, this is a hybrid between the two types of beta-expansions.
Then we investigate various almost sure properties of K.
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TOTALLY POSITIVE QUADRATIC INTEGERS
AND NUMERATION

TOMÁŠ HEJDA AND VÍTĚZSLAV KALA

Abstract. Let K = Q(
√
D) be a real quadratic field. We obtain a presen-

tation of the additive semigroup O+
K(+) of totally positive integers in K; its

generators (indecomposable integers) and relations can be nicely described in
terms of the periodic continued fraction for

√
D. We also characterize all

uniquely decomposable integers in K. In these results, we make use of an
integer numeration system we construct on OK .

1. Introduction

The additive semigroup of totally positive integers O+
K in a totally real number

field K has long played a fundamental role in algebraic number theory, even though
more attention has perhaps been paid to the multiplicative structure of the ring
OK , for example, to its units and unique factorization into primes. Most prominent
purely additive objects are the indecomposable elements, i.e., totally positive inte-
gers α ∈ O+

K that cannot be decomposed into a sum α = β + γ of totally positive
integers β, γ ∈ O+

K .
In the real quadratic case K = Q(

√
D), indecomposables can be nicely charac-

terized in terms of continued fraction (semi-)convergents to
√
D. This stands in

contrast to the situation of a general totally real field K, where it is much harder to
describe indecomposables: Brunotte [Bru83] proved an upper bound on their norm
in terms of the regulator, but otherwise their structure remains quite mysterious.

The goal of this work is to study the structure of the whole additive semigroup
O+
K(+). This is an interesting problem in itself, but it seems also necessary for

certain applications (such as the recent progress in the study of universal quadratic
forms and lattices over K by Kim, Blomer, Yatsyna, and the second author [BK15,
BK17, Kal16, KY17, Kim00]).

In particular, as indecomposable elements are precisely the generators of O+
K(+),

we need to determine the relations between them. While the description of inde-
composables in terms of the continued fraction is fairly straightforward, it is a priori
not clear at all if the same will be the case for relations, as there could be some
“random” or “accidental” ones. Perhaps surprisingly, it turns out that this is not
the case and that the presentation of the semigroup O+

K(+) (given in Theorem 1)
is quite elegant. A key tool in the proof of the presentation is the fact that each
totally positive integer can be uniquely written as a Z+-linear combination of two
consecutive indecomposables (Proposition 2).

2010 Mathematics Subject Classification. 11R11, 11A55, 20M05.
Key words and phrases. Real quadratic number field, semigroup of totally positive integers,

continued fraction, additively indecomposable integer.
Both authors acknowledge support by Czech Science Foundation (GAČR) grant 17-04703Y.
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We also manage to find a basis, alphabet and forbidden strings for a numeration
system on O+

K and show some of its properties (§ 4). This numeration system
naturally generalizes integer numeration systems (see, e.g., [Ost22, Zec72, Fro92,
GT91]) from K = Q to real quadratic fields; the price is that the base becomes a
bi-infinite sequence, namely it is the indecomposables that will play the role of the
basis.

One of course cannot hope to have an analogue of unique factorization in the
additive setting, but nevertheless, some elements can be uniquely decomposed as
a sum of indecomposables. In Theorem 6 we characterize all such uniquely de-
composable elements and obtain again a very explicit result depending only on the
continued fraction. This then yields directly Corollary 7 that O+

K(+) (viewed as an
abstract semigroup) completely determines D and the number field K.

2. Preliminaries

Throughout the work, we will use the following notation. We fix a squarefree
integer D ≥ 2 and consider the real quadratic field K = Q(

√
D) and its ring of

integers OK ; we know that {1, ωD} forms an integral basis of OK , where

ωD :=
{√

D if D ≡ 2, 3 (mod 4),
1+
√
D

2 if D ≡ 1 (mod 4).

By ∆ we denote the discriminant of K, i.e., ∆ = 4D if D ≡ 2, 3 (mod 4) and ∆ = D
otherwise. The norm and trace from K to Q are denoted by N and Tr, respectively.

An algebraic integer α ∈ OK is totally positive iff α > 0 and α′ > 0, where α′ is
the Galois conjugate of α, we write this fact as α � 0; for α, β ∈ OK we denote by
α � β the fact that α − β � 0, and by O+

K the set of all totally positive integers.
We say that α ∈ O+

K is indecomposable iff it can not be written as a sum of two
totally positive integers or equivalently iff there is no algebraic integer β ∈ O+

K such
that α � β. We say that α ∈ O+

K is uniquely decomposable iff there is a unique
way how to express it as a sum of indecomposable elements.

It will be slightly more convenient for us to work with a purely periodic contin-
ued fraction, and so let σD = [u0, u1, . . . , us−1] be the periodic continued fraction
expansion of

σD := ωD + b−ω′Dc =
{√

D + b
√
Dc if D ≡ 2, 3 (mod 4),

1+
√
D

2 +
⌊−1+

√
D

2
⌋

if D ≡ 1 (mod 4)

(with positive integers ui). We then have that ωD =
[
du0/2e, u1, . . . , us

]
. It is well

known that u1, u2, . . . , us−1 is a palindrome and that u0 = us is even if and only if
D ≡ 2, 3 mod 4, hence du0/2e = (us + Tr(ωD))/2.

Denote the convergents to ωD by pi/qi :=
[
du0/2e, u1, . . . , ui

]
and recall that the

sequences (pi), (qi) satisfy the recurrence
(1) Xi+2 = ui+2Xi+1 +Xi for i ≥ −1
with the initial condition q−1 = 0, p−1 = q0 = 1, and p0 = du0/2e. Denote
αi := pi − qiω′D and αi,r = αi + rαi+1. Then we have the following classical facts
(see, e.g., [DS82, Per13]):

• The sequence (αi) satisfies the recurrence (1).
• αi � 0 if and only if i ≥ −1 is odd.
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• The indecomposable elements in O+
K are αi,r with odd i ≥ −1 and 0 ≤ r ≤

ui+2 − 1, together with their conjugates.
• We have that αi,ui+2 = αi+2,0.
• The indecomposables αi,r are increasing with increasing (i, r) (in the lexi-

cographic sense).
• The indecomposables α′i,r are decreasing with increasing (i, r).

We also denote ε > 1 the fundamental unit of OK ; we have that ε = αs−1.
Furthermore, we denote ε+ > 1 the smallest totally positive unit > 1; we have that
ε+ = ε if s is even and ε+ = ε2 = α2s−1 if s is odd. Furthermore, we denote γ0 = ωD
and γi = [ui, ui+1, ui+2, . . . ] for i ≥ 1; we have that ui < γi = ui + 1

γi+1
< ui + 1

for i ≥ 1.

3. Presentation of the semigroup O+
K(+)

In this section we will prove the following theorem that gives a presentation of
the semigroup O+

K(+). We recall that 〈S | R〉 is a presentation of a semigroup
G(+) iff G is generated by S and all (additive) relations between elements of S are
generated by the relations in R.
Theorem 1. The additive semigroup O+

K(+) is presented by
O+
K =

〈
A ∪A′ ∪ {1}

∣∣ R,R′,R0
〉
,

where A := {αi,r : i ≥ −1 odd and 0 ≤ r ≤ ui+2 − 1 }\{1} are the indecomposable
elements > 1, A′ := { y′ : y ∈ A}, and the relations are the following:

R : αi,r−1 − 2αi,r + αi,r+1 = 0 for odd i ≥ −1 and 1 ≤ r ≤ ui+2 − 1,
αi−2,ui−1 − (ui+1 + 2)αi,0 + αi,1 = 0 for odd i ≥ 1;

(2)

R′ : same relations as in R after applying the isomorphism (′);
R0 : α′−1,1 − (u0 + 2) · 1 + α−1,1 = 0.

For convenience, we introduce an alternative notation of the indecomposables.
We define βj , j ∈ Z by the condition that · · · < β−3 < β−2 < β−1 < β0 = 1 < β1 <
β2 < β3 < · · · is the increasing sequence of the indecomposables. Note that we
have β′j = β−j for all j ∈ Z. Using this notation, we can rewrite the relations (2)
in a unified way in terms of βj and certain constants vj as follows:
(3) R,R′,R0 : βj−1 − vjβj + βj+1 = 0 for j ∈ Z.

Note that the given set of relations is minimal in the sense that none of them can
be removed.

In order to prove the previous theorem, we provide a way of expressing totally
positive integers as sums of indecomposables: A variant of this concerning sums of
powers of units was used by Kim, Blomer, and the second author [BK17, Kim00]
in the construction of universal quadratic forms.

Proposition 2. Let x ∈ O+
K . Then there exist unique j0, e, f ∈ Z with e ≥ 1 and

f ≥ 0 such that x = eβj0 + fβj0+1;

4. Numeration system on O+
K

The numeration system we are about to define resembles the Ostrowski numer-
ation systems and is its generalization onto integer rings other than Z.
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Proposition 3. The map (lj)j∈Z 7→
∑
j∈Z ljβj is a bijection L → O+

K , where L is
the set of sequences (lj)j∈Z satisfying the following:

• lj ∈ Z and only finitely many lj’s are non-zero;
• 0 ≤ lj ≤ vj − 1 for all j ∈ Z;
• for all j, J ∈ Z, j ≤ J − 1 we have that (lj , lj+1, . . . , lJ) 6= (vj − 1, vj+1 −

2, vj+2 − 2, . . . , vJ−2 − 2, vJ−1 − 2, vJ − 1).

We will call the sequence (lj)j∈Z ∈ L the greedy expansion of x. It also satisfies
the following:

Theorem 4. (1) The greedy expansion of x ∈ O+
K is obtained by the usual

greedy algorithm, where the seqence (βj)j∈Z is taken as the base.
(2) Suppose x ∈ O+

K is a finite sum x =
∑
j∈Z kjβj with integers kj ≥ 0. Then

the greedy expansion of x is obtained by repeated applying of the relations (3)
on this sum at any position with kj ≥ vj as long as such a position exists;
this process is terminated.

(3) A sequence (lj)j∈Z is the greedy expansion of x ∈ O+
K if and only if (l−j)j∈Z

is the greedy expansion of x′ ∈ O+
K .

5. Uniquely decomposable elements of O+
K

The greedy expansions allow us to describe all uniquely decomposable elements
of O+

K :

Proposition 5. A number x ∈ O+
K is uniquely decomposable if and only if its

greedy expansion (lj)j∈Z is of length one or two, i.e., if there exists j0 such that
lj = 0 for all j 6= j0, j0 + 1.

From this, we can list them explicitly:

Theorem 6. All uniquely decomposable elements x ∈ O+
K are the following:

(a) αi,r with odd i ≥ −1 and 0 ≤ r ≤ ui+2 − 1;
(b) eαi,0 with odd i ≥ −1 and with 2 ≤ e ≤ ui+1 + 1
(c) αi,ui+2−1 + fαi+2,0 with odd i ≥ −1 odd such that ui+2 ≥ 2 and with

1 ≤ f ≤ ui+3;
(d) eαi,0 + αi,1 with odd i ≥ −1 such that ui+2 ≥ 2 and with 1 ≤ e ≤ ui+1;
(e) eαi,0+fαi+2,0 with odd i ≥ −1 such that ui+2 = 1 and with 1 ≤ e ≤ ui+1+1,

1 ≤ f ≤ ui+3 + 1, (e, f) 6= (ui+1 + 1, ui+3 + 1);
(f) Galois conjugates of all of the above.

Corollary 7. The additive semigroups O+
K , for real quadratic fields K, are pairwise

not isomorphic.
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Toolset for supporting the number system
research

Péter Hudoba and Attila Kovács

Abstract The world of generalized number systems contains many challenging ar-
eas. In some cases the complexity of the arising problems is unknown, computer
experiments are able to support the theoretical research. In this talk we introduce a
new toolset that helps to analyze number systems in lattices. The toolset is able to

• Analyze the expansions;
• Decide the number system property;
• Classify and visualize the periodic points;
• Calculate correlations between system data, etc.

In this talk we present an introductory usage of the toolset.

1 Extended abstract

1.1 Introduction

Let Λ be a lattice in Rn and let M : Λ →Λ be a linear operator such that det(M) 6= 0.
Let furthermore 0 ∈ D⊆Λ be a finite subset. Lattices can be seen as finitely gener-
ated free Abelian groups. In this talk we consider number expansions in lattices.

Definition 1. The triple (Λ ,M,D) is called a number system (GNS) if every element
x of Λ has a unique, finite representation of the form
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x =
L

∑
i=0

Midi ,

where di ∈ D and L ∈ N.

Here M is called the base and D is the digit set. It is easy to see that similarity
preserves the number system property, i.e., if M1 and M2 are similar via the matrix
Q then (Λ ,M1,D) is a number system if and only if (QΛ ,M2,QD) is a number
system at the same time. If we change the basis in Λ a similar integer matrix can be
obtained, hence, no loss of generality in assuming that M is integral acting on the
lattice Zn.

If two elements of Λ are in the same coset of the factor group Λ/MΛ then they
are said to be congruent modulo M. If (Λ ,M,D) is a number system then

1. D must be a full residue system modulo M;
2. M must be expansive;
3. det(In−M) 6=±1 (unit condition) .

If a system fulfils the first two conditions then it is called a radix system.
Let ϕ : Λ →Λ , x

ϕ7→M−1(x−d) for the unique d ∈ D satisfying x ≡ d (mod M).
Since M−1 is contractive and D is finite, there exists a norm ‖.‖ on Λ and a constant
C such that the orbit of every x∈Λ eventually enters the finite set S= {x∈Λ | ‖x‖<
C} for the repeated application of ϕ . This means that the sequence x,ϕ(x),ϕ2(x), . . .
is eventually periodic for all x ∈ Λ . Clearly, (Λ ,M,D) is a number system iff for
every x ∈ Λ the orbit of x eventually reaches 0. A point p is called periodic if
ϕk(p) = p for some k > 0. The orbit of a periodic point p is a cycle. The set of all
periodic points is denoted by P . The signature (l1, l2, . . . , lω) of a radix system is a
finite sequence of non-negative integers in which the periodic structure P consists
of #li cycles with period length i (1≤ i≤ ω).

The following problem classes are in the mainstream of the research: for a given
(Λ ,M,D)

• the decision problem asks if the triple form a number system or not;
• the classification problem means finding all cycles (witnesses);
• the parametrization problem means finding parametrized families of number sys-

tems;
• the construction problem aims at constructing a digit set D to M for which

(Λ ,M,D) is a number system. In general, construct a digit set D to M such that
(Λ ,M,D) satisfies a given signature.

The algorithmic complexity of the decision and classification problems is still
unknown.
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1.2 The toolset

We implemented a python based system that contain the following:

• Base features of number systems (addition, multiplication);
• Procedures for the decision and the classification problems;
• Visualization for structure analysis, fractions, etc.
• Different optimization algorithms, etc.

Moreover, in order to support the research we implemented a serves-side applica-
tion which is able to store various data on predefined systems. The database already
contains more than 10000 candidates of the following type:

• Special bases (companions of expansive polynomials with constant terms±2,±3,±5,
±7) with canonical, shifted canonical, symmetric digit sets.

• Product systems.

The data server allows to read the data from the server publicly via a JSON API.
The registered users with API token can send new properties also to the database
and store them in a flexible way. The server already stores plenty of properties, for
example

• Eigenvalues, eigenvectors,
• Periodic points and orbits,
• Classification details.

In this talk we present an introductory usage of the toolset.
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Characterization of rational matrices that admit
finite digit representations

J. Jankauskas and J. M. Thuswaldner

Abstract Let A be an n×n matrix with rational entries and let

Zn[A] :=
∞⋃

k=1

(
Zn +AZn + . . .+Ak−1Zn

)

be the minimal A-invariant Z-module containing the lattice Zn. If D ⊂ Zn[A] is a
finite set we call the pair (A,D) a digit system. We say that (A,D) has the finiteness
property if each z ∈ Zn[A] can be written in the form

z = d0 +Ad1 + . . .+Akdk,

with k ∈ N and digits d j ∈ D for 0 ≤ j ≤ k. We prove that for a given matrix A ∈
Mn(Q) there is a finite set D ⊂ Zn[A] such that (A,D) has the finiteness property
if and only if A has no eigenvalue of absolute value < 1. This result is the matrix
analogue of the height reducing property of algebraic numbers. In proving this result
we also characterize integer polynomials P ∈ Z[x] that admit digit systems having
the finiteness property in the quotient ring Z[x]/(P).
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UNIQUE EXPANSIONS ON FAT SIERPINSKI GASKETS

DERONG KONG AND WENXIA LI

Abstract. Given β ∈ (1, 2), the fat Sierpinski gasket Sβ is defined by

Sβ :=

{ ∞∑

i=1

di
βi

: di ∈ {(0, 0), (1, 0), (0, 1)} for all i ≥ 1

}
.

Let Uβ be the set of points in Sβ having a unique β-expansion with respect to the alphabet
{(0, 0), (1, 0), (0, 1)}. In this paper we give a lexicographical characterization of Uβ , and
determine the critical base βc ≈ 1.55263 such that Uβ has positive Hausdorff dimension
if and only if β > βc. We show that βc is transcendental and is defined in terms of a
modified Thue-Morse sequence. When β = βc, the univoque set Uβ is uncountable but has
zero Hausdorff dimension. When β < βc, the univoque set Uβ is at most countable. This
generalizes the one dimensional result of Glendinning and Sidorov (2001) for the unique
β-expansions to the fat Sierpinski gaskets.
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Multi-base Representations
and their

Minimal Hamming Weight
Daniel Krenn∗ Vorapong Suppakitpaisarn†

Stephan Wagner‡

Given a finite set of bases b1, b2, . . . , br (integers greater than 1), a multi-base rep-
resentation uses, in analogy to a standard base-b representation, all numbers in the
set

B = {bα1
1 bα2

2 · · · bαr
r | α1, α2, . . . , αr ∈ N0}.

More precisely, a multi-base representation of a positive integer n is a representation of
the form

n =
∑

B∈B
dBB, (1)

where the digits dB are taken from a fixed finite set containing 0. Note that we obtain
the standard base-b representation if r = 1, b1 = b and D = {0, 1, . . . , b− 1}.
The Hamming weight of a representation (1) is the number of nonzero terms in the

sum. The Hamming weight is a measure of how efficient a certain representation is.
The Hamming weight of single-base representations has been thoroughly studied,

not only in the case of the standard set {0, 1, . . . , b − 1} of digits, but also for more
general types of digit sets. Both the worst case (maximum) and the average order of
magnitude of the Hamming weight are log n. We investigate the Hamming weight of
multi-base representations; it can be reduced—even in the worst case—by using multi-
base representations, albeit only by a small amount. Perhaps surprisingly, the order of
magnitude is independent of r (provided only that r ≥ 2), the set of bases and the set of
digits: it is always log n/(log log n).
We present the following theorem:
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Theorem. Suppose that r ≥ 2, and that the multiplicatively independent bases b1, b2,
. . . , br and the digit set are such that every positive integer n has a representation of the
form (1). There exist two positive constants K1 and K2 depending on the bases and the
digit set such that the following hold:

(U) For all integers n > 2, there exists a representation of the form (1) with Hamming
weight at most K1

logn
log logn .

(L) For infinitely many positive integers n, there is no representation of the form (1)
whose Hamming weight is less than K2

logn
log logn .

The upper bound (U) was shown by Dimitrov, Jullien and Miller [1] in the case that the
b1, b2 , . . . , br are distinct primes. The proof is based on an analysis of the natural greedy
algorithm and based on a results by Tijdeman [2] from Diophantine approximation. We
present a variant of this proof under the slightly more general condition that the bases b1,
b2, . . . , br are multiplicatively independent.

The lower bound (L) showing that the order of the Greedy algorithm is best possible—
therefore showing that the minimal Hamming weight admits the same order—is based on
a counting argument. In the talk, the details will be revealed. An alternative approach
using communication complexity will also be discussed.
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Infinite families of number systems

Jakub Krásenský and Attila Kovács

Abstract In the context of number systems in lattices, we find a broad class of
radices such that for every one of them there exists an infinite family of digit sets
where the digits get arbitrarily far away from the origin.

1 Extended abstract

The concept of number systems in lattices, pioneered by Vince [5], is a straight-
forward generalization of number systems in the ring of integers of a given alge-
braic number field. The systematic research was initiated by Kátai and continued by
Gilbert, B. Kovács and Pethő. Since every lattice can be transformed into Zd by a
basis transformation, we develop our notions in the convenient setting of an integer
lattice.

Let a regular matrix (radix) L ∈ Zd×d and a finite set of digits 0 ∈ D ⊂ Zd be
given. The pair (L,D) is called a number system (GNS) in Zd if every non-zero
element z ∈ Zd has a unique representation of the form

z =
N

∑
k=0

Lkak, where N ∈ N0, ak ∈ D, aN 6= 0.

The necessary conditions for (L,D) being a number system is that D must be a
complete residue system modulo L, the radix L must be expansive (i.e. ρ(L−1)< 1)
and the “unit condition” det(L−I) 6=±1 must be satisfied. Also, for any given (L,D)
there are algorithms to decide whether it is a GNS or not, however, with unknown
algorithmic complexity.
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The main question is giving sufficient conditions on the operator L such that there
exists at least one GNS with this radix. In special cases of quadratic number fields
this problem was examined e.g. by Steidl [4] and Kátai [2]. The following theorem
generalizes the previous result [1]:

Theorem 1 (Germán, Kovács). If for L ∈ Zd×d the spectral radius of its inverse
satisfies ρ(L−1) < 1/2, then there always exists a digit set D such that (L,D) is a
GNS in Zd .

The suitable digit set can be found as follows: take any vector norm on Rd such that
the induced matrix norm satisfies ‖L−1‖< 1/2. Then we create the so-called dense
digit set by taking the smallest representative (with respect to this norm) from each
congruence class modulo L.

All known number system constructions use digit sets whose elements are very
close to the origin (canonical, symmetric, adjoint). We examined the following ques-
tion: is it possible to create number systems with “sparse” digit sets, i.e. systems
where the digits are arbitrarily far away from the origin? We answer this question
affirmatively for a broad class of radices. Hence, it is possible to construct an infinite
number of different GNSs:

Theorem 2. Let L be a regular d×d integer matrix. Suppose further that

1. ρ(L−1)< 1/2, i.e. all eigenvalues of L are bigger than 2;
2. L is diagonalizable over C;
3. the characteristic polynomial of L is f k for some k ∈ N and f is irreducible

over Q;
4. either d ≥ 3 or L has real eigenvalues and d = 2.

Then we can describe a sequence of digit sets Dn such that for every n the pair
(L,Dn) is a GNS, and for any given finite subset S of the lattice, 0 /∈ S, there exists
N ∈ N such that for n≥ N, the set Dn doesn’t use any of the elements of S.

We also give several other sets of conditions which enable this construction of
“arbitrarily sparse” alphabets, and show that the these conditions are equivalent to
the previous ones.

Jakub Krásenský aknowledges financial support by the Grant Agency of the
Czech Technical University in Prague, grant SGS17/193/OHK4/3T/14.
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Ito ↵-continued fractions and matching

Niels Langeveld

In this talk, we look at Ito ↵-continued fractions and matching. Match-
ing tells us when the entropy as a function of ↵ is increasing constant or
decreasing. We will look at di↵erences and similarities between the case
of Ito-↵ continued fractions and other continued fraction algorithms.

Let T↵ : [↵� 1,↵] ! [↵� 1,↵] be defined by

T↵(x) =

(
S(x) � bS(x) + 1 � ↵c for x 6= 0,

0 for x = 0.
(1)

Di↵erent choices of S in formula (1) give rise to di↵erent generalizations
of the classical continued fraction algorithms:

(N) for S(x) = 1
|x| one gets the ↵-continued fractions first studied by H.

Nakada [8].

(KU) for S(x) = � 1
x

one gets the ↵-continued fractions first studied by S.
Katok and I. Ugarcovici [5].

(IT) for S(x) = 1
x

one gets the ↵-continued fractions first studied by S.
Ito and S. Tanaka [4].

As in cases (N) and (KU), also for Ito-Tanaka continued fractions the
matching property will play a central role; a parameter ↵ 2 [0, 1] satisfies
the matching condition with matching exponents M, N if

T N
↵ (↵) = T M

↵ (↵� 1). (2)

For matching we will use the following definition:

Definition 1 (Matching). Let J ⇢ [0, 1] be an interval with non-empty
interior. We say that J is a matching interval with exponents N, M if

(i) condition (2) holds for every ↵ 2 J ;

(ii) {↵ � 1,↵} \ PM↵ = ;, where PM↵ is the pre-matching set defined
by

PM↵ = {T j
↵(↵), 0 < j < N} [ {T i

↵(↵� 1), 0 < i < M};

(iii) condition (2) does not hold if we decrease the both exponents by 1,
moreover J is not properly contained in any larger interval on which
condition (2) holds.

The di↵erence � := M � N is called matching index.
We call matching set the set A obtained by the union of all matching

intervals; its complement will be called bifurcation set and will be denoted
by E.
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Using a shadowing argument, one can show that for all ↵ 2 Q \ (0, 1)
there is a matching interval J such that ↵ 2 J in the case of (N) and (KU).
For Ito ↵ continued fractions this is not true. For some rationals we will
find that, even though 2 holds, there is no matching interval that they
are contained in. In fact, interesting behaviour can be observed around
these rationals. Let Qb the set of such rationals. We have the following
theorem.

Theorem 0.1. Let b 2 Qb \ (0, 1
2
). Then there exists sequences of inter-

vals (In), (Jn), (Kn), (Ln), n 2 N such that for all n 2 N we have

1. In < Jn < In+1 < Jn+1 < b and b < Kn+1 < Ln+1 < Kn < Ln

2. For all n 2 N the entropy is constant on In and Kn and is increasing
on Jn and Ln.

3. for all � > 0 we have that there is an n such that

• (b � �, b) \ In 6= ;
• (b � �, b) \ Jn 6= ;
• (b, b + �) \ Kn 6= ;
• (b, b + �) \ Ln 6= ;

4. we can find an increasing sequence (cn)n�1 ⇢ Qb and a decreasing
sequence (dn)n�1 ⇢ Qb such that limn!1 cn = limn!1 dn = b.

In the talk we will construct such sequences explicitly. We will also
relate this to an open dynamical system.

This is joint work with Carlo Carminati, Hitoshi Nakada and Wolfgang
Steiner.
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THE SUM-OF-DIGITS FUNCTION OF LINEARLY RECURRENT

NUMBER SYSTEMS AND ALMOST PRIMES

MANFRED G. MADRITSCH

This is joint work with Jörg Thuswaldner from University of Leoben and Mario Weitzer
from Graz University of Technology.

A linear recurrent number system is a generalization of the q-adic number system. In
particular, we replace the sequence of powers of q by a linear recurrent sequence Gk+d =
a1Gk+d−1 + · + adGk for k ≥ 0. Under some mild conditions for every positive integer n we
have a representation of the form

n =
k∑

j=0

εj(n)Gj .

The q-adic number system corresponds to the linear recursion Gk+1 = qGk and G0 = 1.
The first example of a real generalization is due to Zeckendorf who showed that the Fibonacci
sequence G0 = 1, G1 = 2, Gk+2 = Gk+1 + Gk for k ≥ 0 yields a representation for each
positive integer. This is unique if we additionally suppose that no two consecutive ones exist
in the representation.

In the present talk we investigate the representation of primes and almost primes in linear
recurrent number systems. We start by showing the different results due to Fouvry, Mauduit
and Rivat [2–4]in the case of q-adic number systems. Then we shed some light on their main
tools and techniques. The hearth of our considerations is the following Bombieri-Vinogradov
type result

∑

q<xϑ−ε

max
y<x

max
1≤a≤q

∣∣∣∣∣∣∣∣

∑

n<y,sG(n)≡b mod d
n≡b mod q

1− 1

q

∑

n<y,sG(n)≡b mod d

1

∣∣∣∣∣∣∣∣
� x(log 2x)−A,

which we establish under the assumption that a1 ≥ 30. This lower bound is due to numerical
estimation.

With this tool in hand we aim for lower bounds on the sets of primes and almost primes
such that

|{n ≤ x : sG(n) ≡ b mod d, n = p1 or n = p1p2}| �
x

log x
.

Finally we want to discuss further related problems like lower estimates for polynomials
instead of almost primes as have been established by Dartyge, Stoll and Tenenbaum [1,5]
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CONSTRUCTING INVARIANT DENSITIES FOR RANDOM SYSTEMS

MARTA MAGGIONI

This is a joint work with Charlene Kalle. Ergodic theory is convenient for understanding the
global behaviour of series expansions of numbers in a given interval. Indeed, series expansions
can be generated by iterations of an appropriate map T , where the digits are defined by
recursive relations. Generally, most of the maps studied to generate number expansions are
Lasota-Yorke maps ([LY73]), i.e. expanding, piecewise C2-transformations on the interval.
These maps have been intensively studied. For instance, a number of articles have been
published on absolutely continuous invariant measures of these type of transformations. These
measures allow to obtain properties of the related series expansions, such as digits frequency.
A prime example is the binary expansions, where the map T (x) = 2x mod 1 associates with
each point x of the unit interval [0, 1) an infinite sequence of 0’s and 1’s. Another classical
example, although more complicated, is provided by the greedy and lazy β-transformations,
for a non integer β > 1. See [Rén57, Par60, Gel59, DK10, EJK90, Sid03, DdV07] for example.

The deterministic case becomes even more interesting when replaced with a random setting.
In this context, instead of a single map T , a family of maps T1, ..., Tr is considered from which
one is selected at each iteration according to a probabilistic regime. Also random systems
are used to generate number expansions. The random β-expansions introduced in [DK03] by
Dajani and Kraaikamp provides an example, see Figure 1. It uses random combinations of two
piecewise linear maps with constant slope β > 1. See [DdV05, DK13, Kem14] for example.

0 1
β(β−1)

1
β−1

1
β−1

2−β
β−1

(a) T0

0 1
β

1
β−1

1
β−1

1

(b) T1

0 1
β−1

1
β−1

1

2−β
β−1

(c) T

Figure 1. In (a) we see the lazy β-transformation, in (b) the greedy β-
transformation and in (c) we see them combined. Whether or not 1 > 2−β

β−1

depends on the chosen value of β.

In [DdV07] it was shown that these maps have a unique absolutely continuous invariant
measure. In [Kem14] Kempton gave a formula for the invariant density of the random β-
transformation if one chooses the maps according to the uniform Bernoulli regime, and very
recently Suzuki ([Suz17]) extended these results to include the non-uniform Bernoulli regime
as well.

Except for this specific case, not much is known about the absolutely continuous invariant
measures of general random maps. In [Pel84] Pelikan gave sufficient conditions under which
a random system, using a finite number of Lasota-Yorke maps, has absolutely continuous
invariant measures. He also discussed the possible number of ergodic components. But no
explicit expressions for invariant densities were given.

We therefore study invariant densities for any random system of piecewise linear maps that
are expanding on average. More precisely, we provide a procedure to construct an explicit
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formula for the density of an absolutely continuous invariant measure. We obtain this result
by generalising the method from [Kop90], valid in the deterministic setting.

For a given random system T we construct a fundamental matrixM . We prove the existence
of a non-trivial solution for the matrix equation Mγ = 0 and we relate each solution γ to
the density of an absolutely continuous invariant measure hγ of the system T . We apply the
procedure to different examples. We generalise the results from [Kem14] and [Suz17] regarding
the expression for the invariant density for the random β-transformation. Moreover, we study
a system that is not everywhere expanding, but is expanding on average, by considering a
random combination of the greedy β-transformation and the intermittent (α, β)-transformation
introduced in [DHK09], see Figure 2. Last, we study another system that has different slopes,
namely a random Lüroth map with a hole, see Figure 3.

0 1
β

1

1

β − 1

αβ−1
β

Figure 2. The random (α, β)-transformation.

0 1
5
1
4
1
3

1
2

1

1

(a) TL

0 1
5
1
4
1
3

1
2

1

1

(b) TA

0 1
3

1
2

1

1

(c) T

Figure 3. In (a) we see the Lüroth map and in (b) the alternating Lüroth
map. (c) shows the open random system system T consisting of random
combinations of TL and TA restricted to the interval

[
1
3 , 1
]
.
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SOME COMPLEXITY RESULTS IN THE THEORY OF NORMAL

NUMBERS

D. AIREY, S. JACKSON, AND B. MANCE

For a real number r, define real functions πr and σr by πr(x) = rx and σr(x) =
r + x. We let N (b) denote the set of reals x which are normal to base b. We let

N⊥(b) = {y : ∀x ∈ N (b) σy(x) ∈ N (b)}.

Normality preserving functions. Let f be a function from R to R. We say
that f preserves b-normality if f(N (b)) ⊆ N (b)). We can make a similar definition
for preserving normality with respect to the regular continued fraction expansion,
β-expansions, Cantor series expansions, the Lüroth series expansion, etc.

Several authors have studied b-normality preserving functions. They naturally
arise in H. Furstenberg’s work on disjointness in ergodic theory[10]. V. N. Agafonov
[1], T. Kamae [12], T. Kamae and B. Weiss [13], and W. Merkle and J. Reimann [18]
studied b-normality preserving selection rules. The situation for continued fractions
is very different. Let [a1, a2, a3, . . .] be normal with respect to the continued fraction
expansion. B. Heersink and J. Vandehey [11] recently proved that for any integers
m ≥ 2, k ≥ 1, the continued fraction [ak, am+k, a2m+k, a3m+k, . . .] is never normal
with respect to the continued fraction expansion.

In 1949 D. D. Wall proved in his Ph.D. thesis [21] that for non-zero rational r the
function πr is b-normality preserving for all b and that the function σr is b-normality
preserving for all b whenever r is rational. These results were also independently
proven by K. T. Chang in 1976 [8]. D. D. Wall’s method relies on the well known
characterization that a real number x is normal in base b if and only if the sequence
(bnx) is uniformly distributed mod 1[16].

D. Doty, J. H. Lutz, and S. Nandakumar took a substantially different approach
from D. D. Wall and strengthened his result. They proved in [9] that for every real
number x and every non-zero rational number r the b-ary expansions of x, πr(x),
and σr(x) all have the same finite-state dimension and the same finite-state strong
dimension. It follows that πr and σr preserve b-normality. It should be noted that
their proof uses different methods from those used by D. D. Wall and is unlikely to
be proven using similar machinery.

G. Rauzy obtained a complete characterization of N⊥(b) in [19]. M. Bernay used
this characterization to prove that Σb has zero Hausdorff dimension [6]. One of the
main results of this paper, stated in Corollary 3, is to obtain an exact determination
of the descriptive set theoretic complexity of N⊥(b).

M. Mendés France asked in [17] if the function πr preserves simple normality with
respect to the regular continued fraction for every non-zero rational r. This was
recently settled by J. Vandehey [20] who showed that ax+b

cx+d is normal with respect
to the continued fraction when x is normal with respect to the continued fraction
expansion and integers a, b, c,and d satisfy ad − bc 6= 0. Work was also done on
the normality preserving properties of the functions πr and σr for the Cantor series
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expansions by the first and third author in [2] and additonally with J. Vandehey in
[3]. However, these functions are not well understood in this context.

Descriptive Complexity. In any topological space X, the collection of Borel
sets B(X) is the smallest σ-algebra containing the open sets. They are stratified
into levels, the Borel hierarchy, by defining Σ0

1 = the open sets, Π0
1 = ¬Σ0

1 =
{X − A : A ∈ Σ0

1} = the closed sets, and for α < ω1 we let Σ0
α be the collection

of countable unions A =
⋃
nAn where each An ∈ Π0

αn
for some αn < α. We also

let Π0
α = ¬Σ0

α. Alternatively, A ∈ Π0
α if A =

⋂
nAn where An ∈ Σ0

αn
where

each αn < α. We also set ∆0
α = Σ0

α ∩ Σ0
α, in particular ∆0

1 is the collection of
clopen sets. For any topological space, B(X) =

⋃
α<ω1

Σ0
α =

⋃
α<ω1

Π0
α. All of

the collections ∆0
α, Σ0

α, Π0
α are pointclasses, that is, they are closed under inverse

images of continuous functions. A basic fact (see [14]) is that for any uncountable
Polish space X, there is no collapse in the levels of the Borel hierarchy, that is,
all the various pointclasses ∆0

α, Σ0
α, Π0

α, for α < ω1, are all distinct. Thus, these
levels of the Borel hierarch can be used to calibrate the descriptive complexity of
a set. We say a set A ⊆ X is Σ0

α (resp. Π0
α) hard if A /∈ Π0

α (resp. A /∈ Σ0
α). This

says A is “no simpler” than a Σ0
α set. We say A is Σ0

α-complete if A ∈ Σ0
α −Π0

α,
that is, A ∈ Σ0

α and A is Σ0
α hard. This says A is exactly at the complexity level

Σ0
α. Likewise, A is Π0

α-complete if A ∈ Π0
α −Σ0

α.
A fundamental result of Suslin (see [14]) says that in any Polish space B(X) =

∆1
1 = Σ1

1 ∩Π1
1, where Π1

1 = ¬Σ1
1, and Σ1

1 is the pointclass of continuous images
of Borel sets. Equivalently, A ∈ Σ1

1 iff A can be written as x ∈ a ↔ ∃y (x, y) ∈ B
where B ⊆ X × Y is Borel (for some Polish space Y ). Similarly, A ∈ Π1

1 iff it is
of the form x ∈ A ↔ ∀y (x, y) ∈ B for a Borel B. The Σ1

1 sets are also called
the analytic sets, and Π1

1 the co-analytic sets. We also have Σ1
1 6= Π1

1 for any
uncountable Polish space.

H. Ki and T. Linton [15] proved that the set N (b) is Π0
3(R)-complete. Further

work was done by V. Becher, P. A. Heiber, and T. A. Slaman [4] who settled a
conjecture of A. S. Kechris by showing that the set of absolutely normal numbers
is Π0

3(R)-complete. Furthermore, V. Becher and T. A. Slaman [5] proved that the
set of numbers normal in at least one base is Σ0

4(R)-complete.
K. Beros considered sets involving normal numbers in the difference heirarchy in

[7]. Let Nk(b) be the set of numbers normal of order k in base b. He proved that
for b ≥ 2 and s > r ≥ 1, the set Nr(b)\Ns(b) is D2(Π0

3)-complete (see [14] for a
definition of the difference hierarchy). Additionally, the set

⋃
kN2k+1(2)\N2k+2(2)

is shown to be Dω(Π0
3)-complete.

Results. We are interested in determining the exact descriptive set theoretic com-
plexity of N⊥(b) and some related sets. The definition of N⊥(b) shows that N⊥(b)
is Π1

1, since it involves a universal quantification. It is not immediately clear if
N⊥(b) is a Borel set, but this in fact follows from a result of Rauzy. Specifically,
Rauzy [19] characterized N⊥(b) in terms of an entropy-like condition called the
noise. We recall this condition and associated notation from [19]. For any positive
integer length `, let E` denote the set of functions from b` to b. We call an E ∈ E`
a block function of width `. As in [19] we set, for x ∈ R,

β`(x,N) = inf
E∈E`

1

N

∑

n<N

inf{1, |cn − E(cn+1, . . . , cn+`)|},
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where c0, c1, . . . is the (fractional part) of the base b expansion of x.
We also let for E ∈ E

βE(x,N) =
1

N

∑

n<N

inf{1, |cn − E(cn+1, . . . , cn+`)|}.

We then define the lower and upper noises β−(x), β+(x) of x by:

β−(x) = lim
`→∞

β−` (x),

where
β−` (x) = lim inf

N→∞
β`(x,N).

The upper entropy β+(x) is defined similarly using

β+(x) = lim
`→∞

β+
` (x)

where
β+
` (x) = lim sup

N→∞
β`(x,N).

For a fixed E ∈ E we also let

β−E (x) = lim inf
N→∞

βE(x,N),

and similarly for β+
E (x).

Rauzy showed that x ∈ N (b) iff it has the maximal possible noise in that β−(x) =
b−1
b . Furthermore, x ∈ N⊥(b) iff it has minmal possible noise in that β+(x) = 0.

It is therefore natural to ask for any s ∈ [0, b−1b ], what are the complexities of the
lower and upper noise sets associated to s. Specifically, we introduce the following
four sets.

Definition 1. Let s ∈ [0, b−1b ]. Let

A1(s) = {x : β−(x) ≤ s}, A2(s) = {x : β−(x) ≥ s}
A3(s) = {x : β+(x) ≤ s}, A4(s) = {x : β+(x) ≥ s}

(1)

Finally, we let

L(s) = A1(s) ∩A2(s) = {x : β−(x) = s}
U(s) = A3(s) ∩A4(s) = {x : β+(x) = s}.

Thus, N (b) = L( b−1b ), and N⊥(b) = U(0). The Ki-Linton result shows that

N (b), and thus L( b−1b ) is Π0
3-complete for any base b. Recall also the Becher-

Slaman result which shows that the set of reals which are normal to some base b
forms a Σ0

4-complete set.
We have the following complexity results.

Theorem 2. For any s ∈ [0, b−1b ), the set A1(s) is Π0
4-complete and the set A3(s)

is Π0
3-complete. For any s ∈ (0, b−1b ], the set A2(s) is Π0

3-complete, and the set

A4(s) is Π0
2-complete. For s ∈ (0, b−1b ), the set L(s) is Π0

4-complete, and the set

U(s) is Π0
3-complete.

As a corollary we obtain the Ki-Linton result as well as the determination of the
exact complexity of N⊥(b).

Corollary 3. The sets N (b) and N⊥(b) are both Π0
3-complete.
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We remark on the significance of complexity classifications such Theorem 2.
Aside from the intrinsic interest to descriptive set theory, results of this form can
be viewed as ruling out the existence of further theorems which would reduce the
complexity of the sets. For example, Rauzy’s theorem reduces the complexity of
N⊥(b) from Π1

1 to Π0
3. The fact that A3(0) is Π0

3-complete tells us that there
cannot be other theorems which result in a yet simpler characterization of N⊥(b).

Lastly, we wish to approximate the Hausdorff dimension of the sets Ai(s), U(s),
and L(s). Put H(s) = −s log s− (1− s) log(1− s).

Theorem 4. For s ∈
[
0, b−1b

]
we have

dimH(A1(s)) = 1

dimH(A2(s)) = 1

1

log b
H(s) +

log(b− 1)

log b
s ≤dimH(A3(s)) ≤ 1

log b
H(s) + s

dimH(A4(s)) = 1.

Furthermore

1

log b
H(s) +

log(b− 1)

log b
s ≤dimH(U(s)) ≤ 1

log b
H(s) + s

dimH(L(s)) = 1.
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MÖBIUS ORTHOGONALITY FOR AUTOMATIC
SEQUENCES AND BEYOND

CLEMENS MÜLLNER

The presented results are partly joint work with Michael Drmota and
Lukas Spiegelhofer.

This talk focuses on two different methods to show that fixed points
of substitutions can not correlate with the Möbius function. First we
recall the case of substitutions of fixed length. Fixed points of sub-
stitutions of fixed length correspond to automatic sequences and the
author proved that any automatic sequence is orthogonal to the Möbius
function. This result relies on a new structural result for deterministic
finite automata and uses a method developed by Mauduit and Rivat.

In the case of non-constant length substitutions, very little is known
and we focus only on one particular case. It was recently shown by Dr-
mota, Müllner and Spiegelhofer that the sequence (−1)sϕ(n) is asymp-
totically orthogonal to all bounded multiplicative functions, where sϕ
denotes the Zeckendorf sum-of-digits function. In particular we have∑

n<N(−1)sϕ(n)µ(n) = o(N), that is, this sequence is orthogonal to the
Möbius function.

We use the Katai - Bourgain - Sarnak - Ziegler criterion to reduce
the problem to estimates of

∑
n<N(−1)sϕ(pn)+sϕ(qn). To analyze such

sums we use the concept of quasi-additivity with respect to the Zeck-
endorf expansion which allows a generating function approach, which
was introduced by Kropf and Wagner for integer bases.
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ROTATION NUMBER OF CONTRACTED ROTATIONS

Arnaldo Nogueira, Institut des Mathématiques de Marseille
Based on a joint work with Michel Laurant.

Let I = [0, 1) be the unit interval.

Definition 1. Let 0 < λ < 1 and δ ∈ I. We call the map defined by

f = fλ,δ : x ∈ I "→ {λx + δ},

where the symbol {.} stands for the fractional part, a contracted rotation of I.

If λ + δ > 1, f is a 2-interval piecewise contraction on the interval I (see Figure 1).

0 1−δ
λ

1

δ

λ + δ − 1

1

Figure 1. A plot of fλ,δ : I → I, where λ + δ > 1

Many authors have studied the dynamics of contracted rotations, as a dynamical system
or in applications. It is known that every contracted rotation map f has a rotation number
ρ = ρλ,δ, satisfying 0 ≤ ρ < 1. The goal of this article is to study the value of the rotation
number ρλ,δ according to the diophantine nature of the parameters λ and δ. Applying a
classical transcendence result due to J.H. Loxton and A.J. van der Poorten, we prove

Theorem 1. Let 0 < λ, δ < 1 be algebraic real numbers. Then, the rotation number ρλ,δ

is a rational number.

In view of Theorem 1, a natural problem that arises is to estimate the height of the
rational rotation number ρλ,δ in terms of the algebraic numbers λ and δ. We provide a
partial solution for this issue when λ and δ are rational.

Theorem 2. Let λ = a/b and δ = r/s be rational numbers with 0 < λ, δ < 1. Assume

that b > aγ, where γ = 1+
√

5
2

denotes the golden ratio. Then, the rotation number ρλ,δ is
a rational number p/q where

0 ≤ p < q ≤ γ2+ γ log(sb)
log b−γ log a .
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Our proofs of Theorems 1 and 2 are based on an arithmetical analysis of formulae giving
the rotation number ρλ,δ in terms of the parameters λ and δ. As far as we are aware,
it is in the works of E. J. Ding and P. C. Hemmer and Y. Bugeaud that appears the
first complete description of the relations between the parameters λ, δ and the rotation
number ρλ,δ. For 0 < λ < 1 fixed, these papers deal with the variation of the rotation
number in the one-dimensional family of contracted rotations fλ,δ as δ runs through the
interval [0, 1). We summarize the results that we need in the following

Theorem 3. Let 0 < λ < 1 be given. Then the application δ "→ ρλ,δ is a continuous non
decreasing function sending I onto I and satisfying the following properties:
(i) The rotation number ρλ,δ vanishes exactly when 0 ≤ δ ≤ 1 − λ.

(ii) Let
p

q
be a positive rational number, where 0 < p < q are relatively prime integers.

Then ρλ,δ takes the value
p

q
if and only if δ is located in the interval

1 − λ

1 − λq
c

(
λ,

p

q

)
≤ δ ≤ 1 − λ

1 − λq

(
c

(
λ,

p

q

)
+ λq−1 − λq

)
,

where

c

(
λ,

p

q

)
= 1 +

q−2∑

k=1

([
(k + 1)

p

q

]
−
[
k
p

q

])
λk

and the above sum equals 0 when q = 2.
(iii) For every irrational number ρ with 0 < ρ < 1, there exists one and only one real
number δ such that 0 < δ < 1 and ρλ,δ = ρ which is given by the formula

δ = δ(λ, ρ) = (1 − λ)

(
1 +

+∞∑

k=1

([(k + 1)ρ] − [kρ])λk

)
. (1)

The proof of Theorem 2 deeply relies on a tree structure, introduced by Y. Bugeaud and
J.-P. Conze which is parallel to the classical Stern-Brocot tree of rational numbers. It
enables us to handle more easily the complicated intervals occuring in Theorem 3 (ii).
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On Schneider’s Continued Fraction Map on a
Complete Non-Archimedean Field

Speaker: R. Nair (Liverpool)

Abstract : This is joint work with A. Haddley (nee Jaššová) of the
University of Liverpool. The purpose of this talk is to calculate the entropy
of T. Schneider’s continued fraction map, and to show the map has a natural
extention which is Bernoulli. Schneider’s map is the natural analogue of the
Gauss continued fraction map in this setting. The Gauss map is known to
have a Bernoulli natural extention with entropy π2

6 log(2)
. Schneider’s map is

usually defined on the p-adic field for the rational prime p. In fact we work
in a more general setting which we now describe. Let K denote a topological
field. By this we mean that the field K is a locally compact group under the
addition, with respect to a topology. This ensures that there is a translation
invariant Haar measure µ on K, that is unique up to scalar multiplication.
In the non-Archimedean examples that concern us, this topology will always
be discrete. For an element a ∈ K, we are now able to define its absolute
value, as

|a| = µ(aF )

µ(F )
,

for every µ measureable F ⊆ K of finite positive µ measure. Let R≥0 denote
the set of non-negative real numbers. An absolute value is a function |.| :
K → R≥0 such that (i) |a| = 0 if and only if a = 0; (ii) |ab| = |a||b| for all
a, b ∈ K and (iii) |a+ b| ≤ |a|+ |b| for all pairs a, b ∈ K. The absolute value
just defined gives rise to a metric defined by d(a, b) = |a− b| with a, b ∈ K,
whose topology coincides with original topology on the field K.

Topological fields come in two types. The first where (iii) can be replaced
by the stronger condition (iii)* |a + b| ≤ max(|a|, |b|) a, b ∈ K, called non-
Archimedean fields and fields where (iii)* is not true called Archimedean
spaces. In this paper we shall concern ourselves solely with non-Archimedean
fields. Another approach to defining a non-Archimedan field is via discrete
valuations. Denote the real numbers by R. Let K∗ = K\{0}. A map
v : K∗ → R is a valuation if (a) v(K∗) 6= {0}; (b) v(xy) = v(x) + v(y) for
x, y ∈ K and (c) v(x + y) ≥ min{v(x), v(y)}. Two valuations v and cv, for
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c > 0 a real constant, are called equivalent. We extend v to K formally by
letting v(0) = ∞. The image v(K∗) is an additive subgroup of R called the
value group of v. If the value group is isomorphic to Z, we say v is a discrete
valuation. Here Z denotes the set of integers. If v(K∗) = Z, we call v a
normalised discrete valuation. To our initial absolute value we associate the
valuation described as follows. Pick 0 < α < 1 and write |a| = αv(a), i.e., let
v(a) = logα |a|. Then v(a) is a valuation, an additive version of |a|.

Let v : K∗ → R be a valuation corresponding to the absolute value
|.| : K → R≥0. Then

O = Ov := {x ∈ K : v(x) ≥ 0} = OK := {x ∈ K : |x| ≤ 1}

is a ring, called the valuation ring of v and K is its field of fractions. The
set of units in O is O× = {x ∈ K : v(x) = 0} = {x ∈ K : |x| = 1} and
M = {x ∈ K : v(x) > 0} = {x ∈ K : |x| < 1} is an ideal in O. Note
O = O× ∪M. BecauseM is a maximal ideal, we know k = O/M is a field,
called the residue field of v or of K. Henceforth we assume that k is a finite
field. Suppose the valuation v : K∗ → Z is normalised and discrete. Take
π ∈ M such that v(π) = 1. We call π a uniformiser. Then every x ∈ K can
be written uniquely as x = uπn with u ∈ O× and n ∈ Z. In particular every
x ∈M can be written uniquely as x = uπn for a unit u ∈ O× and n ≥ 1.

We now consider two examples.
a) p-adic numbers : Let Q denote the rational numbers. For r = pvp u

v

in Q with u and v coprime to p and each other, let |r|p = p−vp . Then
dp(r, r

′) = |r − r′|p for r′ ∈ Q defines a metric on Q. The completion of
Q with respect to the metric dp is a field denoted Qp referred to as the p-
adic numbers. We also use Zp to denote {x ∈ Qp : |x|p ≤ 1} – the ring
of p-adic integers. It is worth keeping in mind that the metric dp has the
ultrametric property, namely that dp(r, r

′′) ≤ max(dp(r, r
′), dp(r′, r′′)) for all

r, r′ and r′′ ∈ Qp. The main characteristics of the field Qp that distinguish it
from the field R stem from the ultrametric property. It turns out that Qp is
a locally compact abelian field and hence comes endowed with a translation
invariant Haar measure. In this instance K = Qp, O = Zp, M = pZ, π = p
and k = Z/pZ.

b) The field of formal Laurant series in finite characteristic : Let q be
a power of a prime p and let Fq be the finite field with q elements. Denote
by Fq[X] and Fq(X) the ring of polynomials with coefficients in Fq and the
quotient field of Fq[X] respectively. For each P,Q ∈ Fq[X] set |P/Q| :=
qdeg(P )−deg(Q) where for an element g ∈ Fp[X] we have denoted its degree by
deg(g). Let Fq((X−1)) denote the field of formal Laurent series i.e.

Fq((X−1)) =
{
anX

n + · · ·+ a0 + a−1X
−1 + · · · : n ∈ Z, ai ∈ Fq

}
.

45 sciencesconf.org:numeration2018:194191



Also dq(x, y) = |x − y| for x, y ∈ Fq(X) defines a metric on Fq(X). The
metric extends to Fq((X−1)) by completion and by implication to its subset
L = {x ∈ Fq((X−1)) : |x| ≤ 1}. Note that this metric is non-Archimedian
since |x + y| ≤ max(|x|, |y|). In this example K = Fq((X−1)), O = L,
M = XL, π = X and k = L/XL = Fq.

The only two types of non-Archimedean local fields there are are finite
exensions of the field of p-adic numbers for some rational prime p and the
field of formal Laurant series over a finite field.

Our primary object of study in this paper is the map Tv : M → M
defined by

Tv(x) =
πv(x)

x
− b(x)

where b(x) denotes the residue class to which πv(x)

x
belongs in k.

This gives rise to the continued fraction expansion of x ∈M in the form

x =
πa1

b1 +
πa2

b2 +
πa3

b3 + .. .

where bn ∈ k×, an ∈ N for n = 1, 2, . . . . Here N denotes the set of natural
numbers.

The rational approximants to x ∈M arise in a manner similar to that in
the case of the real numbers as follows. We suppose A0 = b0, B0 = 1, A1 =
b0b1 + πa1 , B1 = b1. Then set

An = πanAn−2 + bnAn−1 and Bn = πanBn−2 + bnBn−1

for n ≥ 2. A simple inductive argument, for n = 1, 2, . . . gives

An−1Bn − AnBn−1 = (−1)nπa1+...+an .

One can readily check that the map Tv : M →M preserves Haar measure
on M. By this we mean, for each Haar measurable set A contained in M
we have µ(T−1

v (A)) = µ(A). Here T−1
v (A) := {x ∈M : Tv(x) ∈ A}.

In the case where K = Qp the map Tv reduces to the original Schneider’s
continued fracton map Tp, which motivates this whole investigation and is
defined as follows. For x ∈ pZp define the map Tp : pZp → pZp by

Tp(x) =
pv(x)

x
−
(
pv(x)

x
mod p

)
=
pa(x)

x
− b(x)

46 sciencesconf.org:numeration2018:194191



where v(x) is the p-adic valuation of x, a(x) ∈ N and b(x) ∈ {1, 2, . . . , p−1}.
Then using the continued fraction algorithm for x we get the expansion,

x =
pa1

b1 +
pa2

b2 +
pa3

b3 + .. .

where bn ∈ {1, 2, . . . , p− 1}, an ∈ N for n = 1, 2, . . . .
We now define measure-theoretic entropy. Let (X,A,m) be a probability

space where X is a set, A is a σ-algebra of its subsets and m is a probability
measure. A partition of (X,A,m) is defined as a denumerable collection
of elements α = {A1, A2, . . . } of A such that Ai ∩ Aj = ∅ for all i, j ∈ Λ
with i 6= j and

⋃
i∈ΛAi = X. Here Λ is a denumerable index set. For

a measure-preserving transformation T we have T−1α = {T−1Ai|Ai ∈ α}
which is also a denumerable partition. Given partitions α = {A1, A2, . . . }
and β = {B1, B2, . . . } we define the join of α and β to be the partition
α ∨ β = {Ai ∩ Bj|Ai ∈ α,Bj ∈ β}. For a finite partition α = {A1, . . . , An}
we define its entropy H(α) := −∑n

i=1m(Ai) logm(Ai). Let A′ ⊂ A be a
sub-σ-algebra. Then we define the conditional entropy of α given A′ to
be H(α|A′) := −∑n

i=1 m(Ai|A′) logm(Ai|A′). Here m(A|A′) denotes the m-
conditional probability of A with respect to the σ-algebra A′. See [?] for more
details about conditional probability. The entropy of a measure-preserving
transformation T relative to a partition α is defined to be

hm(T, α) = lim
n→∞

1

n
H

(
n−1∨

i=0

T−iα

)

where the limit always exists. The alternative formula for hm(T, α) which is
used for calculating entropy is

hm(T, α) = lim
n→∞

H

(
α|

n∨

i=1

T−iα

)
= H

(
α|
∞∨

i=1

T−iα

)
.

We define the measure-theoretic entropy of T with respect to the measure m
to be hm(T ) = supα hm(T, α). Here the supremum is taken over all finite or
countable partitions α from A with H(α) <∞.

Two measure-preseving transformations (X1, β1,m1, T1) and (X2, β2,m2, T2)
are said to be isomorphic if there exist sets M1 ⊆ X1 and M2 ⊆ X2 with
m1(M1) = 1 and m2(M2) = 1 such that T1(M1) ⊆ M1 and T2(M2) ⊆ M2
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and such that there exists a map φ : M1 → M2 satisfying φT1(x) = T2φ(x)
for all x ∈ M1 and m1(φ−1(A)) = m2(A) for all A ∈ β2. The importance
of measure theoretic entropy, is that two dynamical systems with different
entropies can not be isomorphic. The following is our first result.

Theorem 0.1 Let B denote the Haar σ-algebra restricted to M and let µ
denote Haar measure on M. Then the measure-preserving transformation
(M,B, µ, Tv) has measure-theoretic entropy #(k)

#(k×)
log(#(k)).

The measure-preserving transformation (pZp,B, µ, Tp) is known to be er-
godic [3]. Moreover, in [2] it was proved that (pZp,B, µ, Tp) is exact. The
exactness of (pZp,B, µ, Tp) implies other weaker properties including mixing,
which implies weak-mixing implying ergodicity, all implications being strict.
Suppose (Y, α, l) is a probability space, and let Yn = (Y, α, l) for each n ∈ Z.
Set (X, β,m) = Πn∈ZYn i.e. the bi-infinite product probability space. For
the shift map τ({xn}) = ({xn+1}), the measure preserving transformation
(X, β,m, τ) is called the Bernoulli process with state space (Y, α, l). Here
{xn} is a bi-infinite sequence of elements of the set Y . Any measure preserv-
ing transformation isomorphic to a Bernoulli process will be referred to as
Bernoulli. The fundamental fact about Bernoulli processes, famously proved
by D. Ornstein, is that Bernoulli processes with the same entropy are iso-
morphic. To any measure-preserving transformation, (X, β,m, T0) we can
associate another called its natural extension. Originally introduced by V.
A. Rokhlin, the natural extension is defined as follows. Set

XT0 = {(x0, x1, x2, . . . ) : xn = T0(xn+1), xn ∈ X,n = 0, 1, 2, . . . },

and let T : XT0 → XT0 be defined by

T ((x0, x1, . . . , )) = (T0(x0), x0, x1, . . . , ).

The map T is 1− 1 on XT0 . If T0 preserves a measure m, then we can define
a measure m on XT0 , by defining m on the cylinder sets

C(A0, A1, . . . , Ak) = {{xn} : x0 ∈ A0, x1 ∈ A1, . . . , xk ∈ Ak}

by
m(C(A0, A1, . . . , Ak)) = m(T−k0 (A0) ∩ T−k+1

0 (A1) ∩ . . . ∩ Ak),
for k ≥ 1. One can check that the transformation (XT0 , β,m, T0) is measure
preserving as a consequence of the measure preservation of the transformation
(X, β,m, T0). Our second theorem is the following.
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Theorem 0.2 Suppose (M,B, µ, Tv) is as in our first theorem. Then the
dynamical system (M,B, µ, Tv) has a natural extension that is Bernoulli.

Our two theorems above together tell us that as a dynamical system, the
isomorphism class to which Tv belongs is determined solely by its residue
class field. This is irrespective of the characteristic of the underlying global
field. For instance for each rational prime p the corresponding Schneider map
has entropy p

p−1
log(p), so we know these maps are mutually non-isomorphic.

Each of them is however isomorpic to the analogue of the Schneider map
on the field of formal power series with coefficient field the finite field of p
elements.

As is well known, if you restrict the Gauss map to the rational numbers
you get the Euclidean algorithm. If you set p = 2 and restrict the Schneider
map to the rational numbers what you get is the Binary Euclidean algorithm.
This is another way of calculating the highest common factor of two integers,
particularly well adapted to efficient implementation on binary machines.
The algorithm was first published by Josef Stein but is also attributed to
Roland Silver and John Terzian. The algorithm may however be much older.
D. Knuth cites a verbal description of the algorithm in the first-century A.D.
Chinese text “Chiu Chang Suan Shu ”. See the reference below for more
details, including missing definitions.
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Essentially non-normal numbers for Cantor
series expansions

Dylan Airey and Bill Mance and Roman Nikiforov

Denote by Nb
n (B,x) the number of times a block B occurs with its starting position

no greater than n in the b-ary expansion of x.
A real number x is normal in base b if for all k and blocks B in base b of length

k, one has

lim
n→∞

Nb
n (B,x)

n
= b−k. (1)

A number x is simply normal in base b if (1) holds for k = 1.
Borel introduced normal numbers in 1909 and proved that almost all (in the sense

of Lebesgue measure) real numbers are normal in all bases. Obviously that the com-
plement of the set of normal numbers has zero Lebesque measure. But how small is
the compliment in fractal and topological sense?

Let consider a subset of set of non-normal numbers for which limit (1) does not
exist for any individual digit. Such numbers called essentially non-normal numbers.
It was proven by Albeverio, Pratsiovytyi and Torbin in 2005 that this set has full
Hausdorff dimension and is of second Baire category. This result was extended for
different system of numeration with finite alphabet (Q-expansion, Q∗-expansion)
and with infinite alphabet (Q∞-expansion, I-Q∞-expansion, Lüroth series expan-
sion). We extend and generalize this result for large class of Cantor series expansion
considering numbers for which limit (1) does not exist for any block of digits for
all k. Furthermore the result still hold for the set of essentially non-normal numbers
whose Cantor series digits are sampled along all arithmetic progressions.
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The Q-Cantor series expansions, first studied by G. Cantor, are a natural general-
ization of the b-ary expansions.

Let Nk := Z∩ [k,∞). If Q ∈ NN
2 , then we say that Q is a basic sequence. Given

a basic sequence Q = (qn)
∞
n=1, the Q-Cantor series expansion of a real number

x ∈ [0,1] is the unique expansion of the form

x =
∞

∑
n=1

En

q1q2 · · ·qn
(2)

where En is in {0,1, . . . ,qn−1} for n≥ 1 with En 6= qn−1 infinitely often.
Let B = (b1,b2, . . . ,bk) is a block of digits of length k. Then for block B and a

natural number j define

IQ, j(B) =

{
1, if b1 < q j,b2 < q j+1, . . . ,bk < q j+k−1,

0, otherwise,

and let

Qn(B) =
n

∑
j=1

IQ, j(B)
q jq j+1 . . .q j+k−1

.

Let NQ
n (B,x) denote the number of occurrences of the block B in the digits of the

Q-Cantor series expansion of x up to position n.
A real number x is essentially non-normal if for all blocks B such lim

n→∞
Qn(B) = ∞

the limit

lim
n→∞

NQ
n (B,x)
Qn(B)

does not exist.
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NUMBER SYSTEMS OVER ORDERS

EXTENDED ABSTRACT

ATTILA PETHŐ AND JÖRG THUSWALDNER

In this talk, which is based on our joint paper [23] we introduce a general notion
of number system defined over orders of number fields. This generalizes the well-
known number systems and canonical number systems in number fields to relative
extensions and allows for the definition of “classes” of digit sets by the use of
lattice tilings. It fits in the general framework of digit systems over commutative
rings defined by Scheicher et al. [25].

Before the beginning of the 1990s canonical number systems have been defined
as number systems that allow to represent elements of orders (and, in particular,
rings of integers) in number fields. After the pioneering work of Knuth [16] and
Penney [21], special classes of canonical number systems have been studied by Kátai
and Szabó [15], Kátai and Kovács [13, 14], and Gilbert [11], while elements of a
general theory are due to Kovács [17] as well as Kovács and Pethő [18, 19]. In 1991
Pethő [22] gave a more general definition of canonical number systems that reads
as follows. Let p ∈ Z[x] be a monic polynomial and let D be a complete residue
system modulo p(0). The pair (p,D) was called a number system if each a ∈ Z[x]
allows a representation of the form

(1) a ≡ d0 + d1x+ · · ·+ d`−1x
`−1 (mod p) (d0, . . . , d`−1 ∈ D).

If such an expansion exists it is unique if we forbid “leading zeros”, i.e., if we
demand d`−1 6= 0 for a 6≡ 0 (mod p) and take the empty expansion for a ≡ 0
(mod p). It can be determined algorithmically by the so-called “backward division
mapping” (see e.g. [1, Section 3] or [25, Lemma 2.5]). Choosing the digit set
D = {0, 1, . . . , |p(0)| − 1}, the pair (p,D) was called a canonical number system,
CNS for short. An overview about the early theory of number systems can be
found for instance in Akiyama et al. [1] and Brunotte, Huszti, and Pethő [7].

Let p ∈ Z[x] and let D be a complete residue system modulo p(0). With the
development of the theory of radix representations it became necessary to nota-
tionally distinguish an arbitrary pair (p,D) from a particular pair (p,D) for which
each a ∈ Z[x] admits a representation of the form (1). Nowadays in the litera-
ture an arbitrary pair (p,D) is called number system (or canonical number system
if D = {0, 1, . . . , |p(0)| − 1}), while the fact that each a ∈ Z[x] admits a repre-
sentation of the form (1) is distinguished with the suffix with finiteness property.
Although there exist many partial results on the characterization of number sys-
tems with finiteness property with special emphasis on canonical number systems
(see for instance [2, 3, 5, 6, 8, 17, 26, 27]), a complete description of this property
seems to be out of reach (although there are fairly complete results for finite field
analogs, see for instance [4, 9, 20]).
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If (p,D) is a number system and a ∈ Z[x] admits a representation of the form
(1), we call ` the length of the representation of a in this number system (for a ≡ 0
(mod p) this length is zero by definition).

In the present talk we generalize the CNS concept in two ways. Firstly, instead
of looking at polynomials in Z[x] we consider polynomials with coefficients in some
order O of a given number field of degree k, and secondly, we consider the sets of
digits in a more general but uniform way. Indeed, for each fundamental domain F
of the action of Zk on Rk we define a class of number systems (p,DF ) where F
associates a digit set DF with each polynomial p ∈ O[x] in a natural way. Thus for
each fundamental domain F we can define a class GF := {(p,DF ) : p ∈ O[x]} of
number systems whose properties will be studied.

Our main objective will be the investigation of the finiteness property for these
number systems. For a given pair (p,D) this property can be checked algorith-
mically. This makes it possible to prove a strong bound for the length of the
representations, provided it exists.

The “dominant condition”, a condition for the finiteness property of (p,D) that
involves the largeness of the absolute coefficient of p, has been studied for canonical
number systems in several versions for instance in Kovács [17, Section 3], Akiyama
and Pethő [2, Theorem 2], Scheicher and Thuswaldner [26, Theorem 5.8], and
Pethő and Varga [24, Lemma 7.3]. The main difficulty of the generalization of
the dominant condition is due to the fact that in O we do not have a natural
ordering, hence, we cannot adapt the methods that were used in the case of integer
polynomials. However, by exploiting tiling properties of the fundamental domain
F we are able to overcome this difficulty, and provide a general criterion for the
finiteness property that is in the spirit of the dominant condition and can be used
in the proofs of our main results. In particular, using this criterion, depending on
natural properties of F we are able to show that (p(x+m), DF ) enjoys a finiteness
property for each given p provided that m (or |m|) is large enough. This forms
a generalization of an analogous result of Kovács [17] to this general setting. We
also give a converse of this result in showing that (p(x−m), DF ) doesn’t enjoy the
finiteness property for large m if F has certain properties.

If p ∈ Z[x] is irreducible then Z[x]/(p) is isomorphic to Z[α] for any root α of p.
Thus in this case the finiteness property of (p,D) is easily seen to be equivalent to
the fact that each γ ∈ Z[α] admits a unique expansion of the form

(2) γ = d0 + d1α+ · · ·+ d`−1α
`−1

with analogous conditions on d0, . . . , d`−1 ∈ D as in (1). In this case we sometimes
write (α,D) instead of (p,D). This relates number systems to the problem of power
integral bases of orders. Recall that the order O has a power integral basis, if there
exists α ∈ O such that each γ ∈ O can be written uniquely in the form

γ = g0 + g1α+ · · ·+ gk−1α
k−1

with g0, . . . , gk−1 ∈ Z. In this case O is called monogenic. The definitions of
number system with finiteness property (2) and power integral bases seem similar
and indeed there is a strong relation between them. Kovács [17, Section 3] proved
that the order O has a power integral basis if and only if it contains α such that
(α, {0, . . . , |NQ(α)/Q(α)| − 1}) is a CNS with finiteness property. A deep result of
Győry [12] states that, up to translation by integers, O admits finitely many power
integral bases and they are effectively computable. Combining this result of Győry
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with the above mentioned theorem of Kovács [17, Section 3], Kovács and Pethő [18]
proved that if 1, α, . . . , αk−1 is a power integral basis then, up to finitely many
possible exceptions, (α −m,N0(α −m)),m ∈ Z is a CNS with finiteness property
if and only if m > M(α), where M(α) denotes a constant. A good overview over
this circle of ideas is provided in the book of Evertse and Győry [10].

Using this theorem we generalize the results of Kovács [17] and of Kovács and
Pethő [18] to number systems over orders in algebraic number fields. Our result is
not only more general as the earlier ones, but sheds fresh light to the classical case of
number systems over Z too. It turns out that under general conditions in orders of
algebraic number fields the power integral bases and the bases of number systems
with finiteness condition up to finitely many, effectively computable exceptions
coincide. Choosing for example the symmetric digit set, the conditions satisfy
and, hence, power integral bases and number systems coincide up to finitely many
exceptions. This means that CNS are quite exceptional among number systems.
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[7] H. Brunotte, A. Huszti, and A. Pethő, Bases of canonical number systems in quartic
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FUNDAMENTAL DOMAINS FOR RATIONAL FUNCTION BASED DIGIT

SYSTEMS OF FORMAL LAURENT SERIES OVER FINITE FIELDS

M.J.C. LOQUIAS AND A.D.C. RODRIGUEZ?

Institute of Mathematics, College of Science, University of the Philippines Diliman

Abstract. Let F be a finite field. Digit systems for the residue class ring S of the ring
F((x−1, y−1)) of formal Laurent series in two variables over F modulo a polynomial f in F[x, y]
that is monic in both x and y were studied in [1]. In particular, fundamental domains with
respect to both x-digit and y-digit representations that induce a tiling of S were examined.
More recently, digit systems with rational base P/Q, where P,Q ∈ F[x] are coprime with
degP > degQ ≥ 0, for the field F((x−1)) were introduced in [2]. These new digit systems may
be viewed as for the ring S formed from the polynomial f = Qy − P , which is not necessarily
monic in y. In this contribution, we obtain fundamental domains with respect to P/Q-digit
representations given by such digit systems and investigate some of their properties.
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OPEN MAPS: SMALL AND LARGE HOLES

NIKITA SIDOROV

Let X be a compact manifold, T : X → X piecewise continuous with
positive entropy, and µ a T -invariant probability measure on X. Let
H be an open connected subset of X which we treat as a hole. Then
the survivor set J(H) is the set of all x ∈ X whose T -orbits avoid H.

In my talk I will concentrate on the following questions:

(i) If µ(H) is sufficiently small, is it true that the Hausdorff di-
mension of J(H) is positive?

(ii) If µ(H) is sufficiently close to 1, is it true that J(H) is count-
able?

We will see that the answers strongly depend on whether X is one-
dimensional. My main examples will be the doubling map and the
baker’s map.

As it turns out, in the case of the doubling map and H = (a, b),
the critical holes are closely related to balanced words and Sturmian
sequences. For the baker’s map the situation is very different, although
the Thue-Morse sequence appears to play a significant role as well.

This talk is based on my recent papers with Paul Glendinning (Manch-
ester) and Kevin Hare (Waterloo).
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THE LEVEL OF DISTRIBUTION OF THE THUE–MORSE SEQUENCE

LUKAS SPIEGELHOFER

Abstract. The level of distribution of a complex valued sequence b measures how well b

behaves on arithmetic progressions nd+ a. Determining whether a given number θ is a level
of distribution for b involves summing a certain error over d ≤ D, where D depends on θ; this

error is given by comparing a finite sum of b along nd+ a and the expected value of the sum.

We prove that the Thue–Morse sequence has level of distribution 1, which is essentially best
possible. More precisely, this sequence gives one of the first nontrivial examples of a sequence

satisfying an analogue of the Elliott–Halberstam conjecture in prime number theory. In

particular, this result improves on the level of distribution 2/3 obtained by Müllner and the
author.

Moreover, we show that the subsequence of the Thue–Morse sequence indexed by bncc,
where 1 < c < 2, is simply normal. That is, each of the two symbols appears with asymptotic
frequency 1/2 in this subsequence. This result improves on the range 1 < c < 3/2 obtained

by Müllner and the author and closes the gap that appeared when Mauduit and Rivat proved

(in particular) that the Thue–Morse sequence along the squares is simply normal. In the
proofs, we reduce both problems to an estimate of a certain Gowers uniformity norm of the

Thue–Morse sequence similar to that given by Konieczny (2017).

1. Extended abstract

Let t be the Thue–Morse sequence N → {0, 1} defined by t(n) = 0 if and only if 2 | s(n),
where s(n) is the binary sum-of-digits function. The main topic of this article is the study of
t along arithmetic progressions and, more generally, along Beatty sequences bnα + βc. We are
particularly interested in the error term for sparse arithmetic progressions, having large common
difference d. This is the subject of our main result.

Theorem 1.1. Assume that ε > 0. Then

∑

1≤d≤x1−ε

max
0≤y≤x

max
0≤a<d

∣∣∣∣∣
∑

0≤n<y
n≡a mod d

(−1)s(n)

∣∣∣∣∣ = O(x1−η)

for some η > 0 depending on ε.

The formulation of this theorem is an analogue of the Elliott–Halberstam conjecture.

Conjecture (Elliott–Halberstam). For all real numbers A > 0 there exists a constant C such
that for all x ≥ 2

∑

1≤d≤x1−ε

max
0≤a<d

gcd(a,d)=1

∣∣∣∣π(x; d, a)− π(x)

ϕ(d)

∣∣∣∣ ≤ Cx(log x)−A.

Here ϕ denotes Euler’s totient function, π(x) is the number of primes up to x, and π(x; d, a) is
the number of such primes that are ≡ a mod d.

Our result says that the Thue–Morse sequence has level of distribution 1, while the Elliott–
Halberstam conjecture states that the primes have level of distribution 1. It is known that 1/2
is a level of distribution of the primes (the Bombieri–Vinogradov theorem).
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A level of distribution 0.55711 for the sum of digits in base 2 modulo m (and also a level
0.5924 for Thue–Morse) was obtained by Fouvry and Mauduit [2]. Using sieve theory, they
applied this result to the study of s(n) mod m for positive integers n having at most two prime
factors. They also considered [1] the sum of digits in base q modulo m, where gcd(m, q− 1) = 1
and obtained the result that the level of distribution approaches 1 as the base q grows.

Later, in an important paper, Mauduit and Rivat [6] could handle the sum of digits of prime
numbers.

Theorem 1.1 seems to be one of the first examples of a sequence with level of distribution
equal to 1. More precisely, it is one of the first such examples where we have a maximum
over a inside the sum over d; therefore the formulation “analogue of the Elliott–Halberstam
conjecture”.

Our second result concerns the Thue–Morse sequence on Piatetski-Shapiro sequences bncc.
Theorem 1.2. Let 1 < c < 2. The Thue–Morse sequence along bncc is simply normal. That
is, each of the letters 0 and 1 appears with asymptotic frequency 1/2 in n 7→ t(bncc).

The two main theorems are connected. More precisely, by the same method of proof used
for Theorem 1.1, we prove a Beatty sequence analogue; this analogue can be used to prove
Theorem 1.2 using linear approximation of bncc by bnα+ βc.
Theorem 1.3. We define

A(y, z;α, β) =
∣∣{y ≤ m < z : t(m) = 0 and ∃n ∈ Z such that m = bnα+ βc

}∣∣.
Let 0 < θ1 ≤ θ2 < 1. There exist η > 0 and C such that

∫ 2D

D

max
y,z

0≤y≤z
z−y≤x

max
β≥0

∣∣∣∣A(y, z;α, β)− z − y
2α

∣∣∣∣ dα ≤ Cx1−η

for all x and D such that x ≥ 1 and xθ1 ≤ D ≤ xθ2 .

The method of approximation of bncc by bnα + βc for proving theorems like Theorem 1.2
has been discussed in length in the earlier articles [8] by the author and [7] by Müllner and the
author. In those articles, we obtained the ranges 1 < c ≤ 1.42 and 1 < c < 1.5 respectively,
improving on the range 1 < c < 1.4 obtained by Mauduit and Rivat [4].

Mauduit and Rivat [5], in another major paper, showed (in particular) that the Thue–Morse
sequence along n2 is simply normal.

Theorem 1.2 therefore closes the gap [1.5, 2) in the set of exponents for which we have an
asymptotic formula for Thue–Morse along bncc.

In the present article, we restrict ourselves to giving an outline of the proof of Theorem 1.1.

1.1. Idea of proof of Theorem 1.1. As in our earlier paper with Müllner [7, Section 4.1], it
is sufficient to prove the following result.

Proposition 1.4. For real numbers N,D ≥ 1 and ξ set

S0 = S0(N,D, ξ) =
∑

D≤d<2D

max
a≥0

∣∣∣∣∣
∑

0≤n<N
e

(
1

2
s(nd+ a)

)
e(nξ)

∣∣∣∣∣,

where e(x) = exp(2πix). Let ρ2 ≥ ρ1 > 0. There exists an η > 0 and a constant C such that

S0

ND
≤ CN−η

holds for all ξ ∈ R and all real numbers N,D ≥ 1 satisfying Nρ1 ≤ D ≤ Nρ2 .
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It is sufficient to prove this for D = 2ν . By Cauchy–Schwarz, followed by van der Corput’s
inequality, moreover by using a “carry propagation lemma” (e.g. [7, Lemma 3.6]) we obtain

∣∣S0(N, 2ν , ξ)
∣∣2 � 2νN

R0

∑

1≤r0<R0

×
∑

2ν≤d<2ν+1

sup
a≥0

∣∣∣∣∣
∑

0≤n<N
e

(
1

2
sλ
(
(n+ r0)d+ a

)
− 1

2
sλ
(
nd+ a

)
)∣∣∣∣∣+ errors,

where sλ is the “truncated sum-of-digits function” defined by sλ(n) = s(n mod 2λ). We apply
the inequalities of Cauchy–Schwarz and van der Corput alternatingly m times, and obtain

(1.1)

∣∣∣∣
S0(N, 2ν , ξ)

2νN

∣∣∣∣
2m+1

� 1

R02mρ2νN

∑

1≤r0<R0

0≤ri<2ρ,1≤i≤m

∑

0≤d<2λ

sup
a≥0

∣∣S1

∣∣+ errors,

where

S1 =
∑

0≤n<N
e

(
1

2

∑

ε0,...,εm∈{0,1}
sλ
(
nd+ a+ ε0r0d+ ε1r1K1d+ · · ·+ εmrmKmd

)
)

and λ > ν is chosen later in the proof.
Now we choose the multiples K1, . . . ,Km in such a way that the number of digits to be taken

into account is reduced from λ to ρ := λ− (m+ 1)µ, where µ and m are chosen later. For this
we use Farey series. Let pQ(α)/qQ(α) be the element of the Farey series FQ associated to α (see
e.g. [7]) and set

K1 = 22µq2σ

(
d

2(m−1)µ

)
;

Ki = q2µ+2σ

(
d

2(i+1)µ

)
q2σ

(
p2µ+2σ

(
d/2(i+1)µ

)

2(m−i)µ

)
for 2 ≤ i < m;

Km = q2µ+σ

(
d

2(m+1)µ

)
,

where σ is chosen later. Using the approximation property |qQ(α)α − pQ(α)| < 1/Q, we see
that Kiα/2

iµ is close to a multiple of 2µ for 2 ≤ i ≤ m. Using this, and the discrepancy of
nα-sequences modulo 1, we cut off µ many digits at a time (2µ many in the first step) and
obtain

S1 = S2 + errors,

where

S2 =
∑

0≤n<N
e

(
1

2

∑

ε0,...,εm∈{0,1}
sλ−(m+1)µ

(⌊
nd+ a

2(m+1)µ
+

ε0r0d

2(m+1)µ

⌋
+

∑

1≤i≤m
εiripi

))
,

and

p1 = p2σ

(
d

2(m−1)µ

)
;

pi = p2σ

(
p2µ+2σ

(
d/2(i+1)µ

)

2(m−i)µ

)
for 2 ≤ i < m;(1.2)

pm = p2µ+σ

(
d

2(m+1)µ

)
.
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For simplicity of argument, assume that the second summand in the floor function in the

definition of S2 is not present, and write S̃2 for the resulting expression. Using the usually
very small discrepancy of nα-sequences, and choosing m large enough, we see that the sequence
b(nd + a)/2(m+1)µc runs through all the residue classes mod 2ρ, where ρ = λ − (m + 1)µ, in a
very uniform way. Therefore

S̃2 =
N

2ρ

∑

0≤k<2ρ

e

(
1

2

∑

ε1,...,εm∈{0,1}
sρ

(
k +

∑

1≤i≤m
εiripi

))
+ errors.

We note the important fact that this expression is independent of the residue class a + dZ.
This allows us to remove the maximum over a inside the sum over d, and thus prove the strong
statement on the level of distribution.

Using the identity (1.1), we see that we have to treat the sum

S̃3 =
∑

0≤d<2λ

∑

0≤r1,...,rm<2ρ

∣∣S̃2

∣∣.

At this point, we apply the argument that for most α < 2λ the 2-valuation of p1, . . . , pm is
small. (This is established by a technical lemma that we do not present here.) For these α, the
term ripi mod 2ρ attains each k ∈ {0, . . . , 2ρ − 1} not too often, as ri runs. We may therefore
replace rip1 by ri and thus obtain full sums over ri. It remains to estimate the expression

∑

0≤r1,...,rm<2ρ

∣∣∣∣∣∣
∑

0≤n<2ρ

e


1

2

∑

ε1,...,εm∈{0,1}
sρ


n+

∑

1≤i≤m
εiri





∣∣∣∣∣∣
.

Using Cauchy–Schwarz, the absolute value can be removed at the cost of an additional variable
rm+1. The problem is therefore reduced to proving a nontrivial estimate for the sum

∑

0≤r1,...,rm+1<2ρ

∑

0≤n<2ρ

e


1

2

∑

ε1,...,εm+1∈{0,1}
sρ


n+

∑

1≤i≤m+1

εiri




 .

This is a Gowers uniformity norm for the Thue–Morse sequence; a very similar estimate was
given by Konieczny [3], and we use ideas from that paper to prove our estimate. This finishes
the proof.

References
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Some negative results related to Poissonian pair

correlation problems

Gerhard Larcher, Wolfgang Stockinger

Abstract

We say that a sequence (xn)n∈N in [0, 1) has Poissonian pair correla-
tions if

lim
N→∞

1

N
#

{
1 ≤ l 6= m ≤ N : ‖xl − xm‖ ≤ s

N

}
= 2s

for every s ≥ 0. The aim of this talk is twofold. First, we will establish
a gap theorem which allows to deduce that a sequence (xn)n∈N of real
numbers in [0, 1) having a certain weak gap structure, cannot have Pois-
sonian pair correlations. This result covers a broad class of sequences,
e.g., Kronecker sequences, the van der Corput sequence and in more gen-
eral LS-sequences of points and digital (t, 1)-sequences. Additionally, this
theorem enables us to derive negative pair correlation properties for se-
quences of the form ({anα})n∈N, where (an)n∈N is a strictly increasing
sequence of integers with maximal order of additive energy, a notion that
plays an important role in many fields, e.g., additive combinatorics, and is
strongly connected to Poissonian pair correlation problems. These state-
ments are not only metrical results, but hold for all possible choices of
α.

Second, we study the pair correlation statistics for sequences of the
form, xn = {bnα}, n = 1, 2, 3, . . ., with an integer b ≥ 2, where we choose
α as the Stoneham number and as an infinite de Bruijn word.

1 Introduction and statement of main results

The concept of Poissonian pair correlations has its origin in quantum mechan-
ics, where the spacings of energy levels of integrable systems were studied. See
for example [1] and the references cited therein for detailed information on that
topic. Rudnik and Sarnak first studied this concept from a purely mathematical
point of view and over the years the topic has attracted wide attention, see e.g.,
[7, 14, 15, 16, 17].

Let ‖ · ‖ denote the distance to the nearest integer. A sequence (xn)n∈N
of real numbers in [0, 1) has Poissonian pair correlations if the pair correlation
statistics

FN (s) :=
1

N
#
{

1 ≤ l 6= m ≤ N : ‖xl − xm‖ ≤
s

N

}
(1)
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tends to 2s, for every s ≥ 0, as N →∞.

Recently, Aistleitner, Larcher, Lewko and Bourgain (see [2]) could give a
strong link between the concept of Poissonian pair correlations and the additive
energy of a finite set of integers, a notion that plays an important role in many
mathematical fields, e.g., in additive combinatorics. To be precise, for a finite
set A of reals the additive energy E(A) is defined as

E(A) :=
∑

a+b=c+d

1,

where the sum is extended over all quadruples (a, b, c, d) ∈ A4. Roughly speak-
ing, it was proved in [2] that if the first N elements of an increasing sequence of
distinct integers (an)n∈N, have an arbitrarily small energy saving, then ({anα})n∈N
has Poissonian pair correlations for almost all α. In this paper the authors also
raised the question if ({anα})n∈N, where (an) is an increasing sequence of dis-
tinct integers with maximal order of additive energy, can have Poissonian pair
correlations for almost all α. Jean Bourgain could show that the answer to this
question is negative, i.e., he proved:

Theorem A (in [2]) If E(AN ) = Ω(N3), where AN denotes the first N ele-
ments of (an)n∈N, then there exists a subset of [0, 1] of positive measure such that
for every α from this set the pair correlations of ({anα})n∈N are not Poissonian.

Recently, the result of Bourgain has been further extended, see [1, 9, 10, 11].
The result given in [10] is an easy consequence of our Theorem 1 stated below
and will be shown in Section 2. Further, see [4, 5] for (negative) results and
discussions concerning a Khintchine type criterion which fully characterizes the
metric pair correlation property in terms of the additive energy.

Due to a result by Grepstad and Larcher [6] (see also [3, 19]), we know that
a sequence which satisfies that (1) tends to 2s, for every s ≥ 0, as N → ∞, is
also uniformly distributed in [0, 1), i.e., it satisfies

lim
N→∞

1

N
#{1 ≤ n ≤ N : xn ∈ [a, b)} = b− a

for all 0 ≤ a < b ≤ 1. Note that the other direction is not necessarily correct.
For instance the Kronecker sequence ({nα})n∈N is uniformly distributed modulo
1 for irrational α, but does not have Poissonian pair correlations for any real α;
a fact that easily follows from continued fractions arguments. In earlier papers
(see e.g., [2, 17]) this fact was argued to be an immediate consequence of the
Three Gap Theorem [18]. The Three Gap Theorem, roughly speaking, states
that the Kronecker sequence always has at most three distinct distances between
nearest sequence elements. Nonetheless – at least for us – it is not immediately
clear that we can deduce from this fact that ({nα})n∈N is not Poissonian for any
α. Therefore, we will prove the following very general result concerning the link
between Poissonian pair correlations and a certain gap structure of a sequence
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in the unit interval. In the next section, we will present some applications of
this Theorem 1.

Theorem 1 Let (xn)n∈N be a sequence in [0, 1) with the following property:
There is an s ∈ N, positive real numbers K and γ, and infinitely many N such
that the point set x1, . . . , xN has a subset with M ≥ γN elements, denoted by
xj1 , . . . , xjM , which are contained in a set of points with cardinality at most KN
having at most s different distances between neighbouring sequence elements, so-
called gaps. Then, (xn)n∈N does not have Poissonian pair correlations.

Poissonian pair correlation is a typical property of a sequence. Random se-
quences, i.e., almost all sequences, have the Poissonian pair correlation prop-
erty. Nevertheless, it seems to be extremely difficult to give explicit examples of
sequences with Poissonian pair correlations. We note that ({√n})n∈N has Pois-
sonian pair correlations, [12] (see [13] for another explicit construction). Apart
from that – to our best knowledge – no other explicit examples are known.
Especially, until now we do not know any single explicit construction of a real
number α such that the sequence of the form ({anα})n∈N has Poissonian pair
correlations.

We recall that the sequence ({bnα})n∈N, for an integer b ≥ 2, has the Poisso-
nian property for almost all α. Moreover we know that the sequence ({bnα})n∈N
is uniformly distributed modulo 1 if and only if α is normal in base b, see e.g., [8].
So, if we want to investigate, whether the distribution of the pair correlations
for some explicit given sequence is Poissonian, the sequence has to be uniformly
distributed modulo 1. Therefore, if we study the distribution of the spacings
between the sequence elements of ({bnα})n∈N, the only reasonable choice for α
is a b-normal number. We will present two special instances, which were sug-
gested by Yann Bugeaud as potential candidates in personal communication.
We will consider so-called infinite de Bruijn words and Stoneham’s number. For
these instances, we also obtained negative results considering the Poissonian
pair correlation structure.
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SYMMETRIC AND CONGRUENT RAUZY FRACTALS

PAUL SURER

Based on a joint work with K. Scheicher and V. Sirvent

Let A = {1, 2, . . . ,m} be a finite set (alphabet) and A∗ the finite words over A. We
denote by σ a morphism A∗ −→ A∗ that we require to be primitive, hence, there
exists a power n such that for each two letters i, j ∈ A the word σn(j) contains i
at least once.

Primitivity ensures that the matrix Mσ = (|σ(j)|i)1≤,i,j≤m (where |σ(j)|i de-
notes the number of occurrences of i in the word σ(j)) possesses a dominant real
eigenvalue β. We are interested in unimodular Pisot substitutions, that is β is a
Pisot unit of algebraic degree d+ 1 (thus, d+ 1 ≤ m). In this case it is well known
that we can associate to σ a compact set Rσ ⊂ Rd of fractal shape known as Rauzy
fractal (see, for example, [2, 3]).

Given unimodular Pisot substitutions σ, τ we are interested in the following
problems:

• Which conditions ensure the associated Rauzy fractals Rσ, Rτ to be con-
gruent (that is they differ by an affine transformation only)?
• Which conditions ensure that the Rauzy fractal Rσ is central symmetric?

We discuss the questions in terms of the induced language. For a primitive substi-
tution σ it is defined by

Lσ := {A ∈ A∗| ∃n ≥ 1 : A is a subword of σn(1)}.
Therefore, our discourse involves a lot of combinatorics on words. Concretely we
have the following two main results.

Theorem (cf. [5]). Let σ and τ be irreducible Pisot substitutions (i.e. d + 1 =
m) over the same alphabet A. If Lσ = Lτ then the Rauzy fractals Rσ, Rτ are
congruent.

For irreducible substitutions we need additional conditions.
For a word A ∈ A∗ we denote by Ã the reversed word (or mirror-word). We

call a set L ⊂ A∗ mirror-invariant if for each A ∈ L we have Ã ∈ L. With these
notations we can state the following theorem concerning central symmetric Rauzy
fractals.

Theorem (cf. [5]). Let σ be a Pisot substitutions over A. If Lσ is mirror-invariant
then the Rauzy fractals Rσ is central-symmetric.

Based on these two theorems we will present concrete classes of substitutions
that yield congruent or central-symmetric Rauzy fractals. For these classes we will
be able to give explicit expressions for the respective translation and the point

Key words and phrases. Substitutions; Rauzy fractals; Combinatorics on words.
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of symmetry, respectively. Furthermore, we analyse whether the conditions in our
theorems are necessary. We will see that the topic is related with up to now unsolved
problems as the Pisot conjecture (see for example [1]) and the Class P conjecture
stated in [4]. The presentation will be accompanied by illustrative examples.
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Digital questions in finite fields

Cathy Swaenepoel
Université d’Aix-Marseille

The connection between the arithmetic properties of an integer and
the properties of its digits in a given basis produces a lot of interesting
questions and many papers have been devoted to this topic. In the
context of finite fields, the algebraic structure permits to formulate
and study new problems of interest which might be out of reach in N.
This study was initiated by C. Dartyge and A. Sárközy.

We will devote our interest to several new questions in this spirit:

(1) estimate precisely the number of elements of some special se-
quences of Fq whose sum of digits is fixed;

(2) given subsets C and D of Fq, find conditions on |C| and |D| to
ensure that there exists (c, d) ∈ C × D such that the sum of
digits of cd belongs to a predefined subset of Fp;

(3) estimate the number of elements of an interesting sequence of
Fq with preassigned digits.

We notice that the notion of digits in Fq is directly related to the notion
of trace which is crucial in the study of finite fields.
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SOME NEWS ON RATIONAL SELF-AFFINE TILES

J. M. THUSWALDNER

Let A be an expanding d×d integer matrix and D ⊂ Zd a complete set of residue
class representatives of Zd/AZd. Then by a classical result of Hutchinson one can
uniquely define a nonempty compact set T by the set equation

AT = T +D.
The set T is called a self-affine tile. Self-affine tiles have been studied extensively
in the literature. An important result by Lagarias and Wang from 1997 states that
such tiles form a lattice tiling w.r.t. the lattice Zd under very general conditions.
Together with Steiner we gave a generalization of this result to self-affine tiles
defined in terms of rational matrices with irreducible characteristic polynomial. In
the proofs of this generalization we used tools from algebraic number theory. In an
ongoing work with Jankauskas and Steiner we want to get rid of the irreducibility
condition. To this end we use methods from linear algebra and harmonic analysis.
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Indecomposable integers and universal quadratic
forms

Magdaléna Tinková (with M. Čech, D. Lachman, J. Svoboda and K. Zemková)

Department of Algebra, Charles University,
Sokolovská 83, 175 86 Praha 8, Czech Republic
tinkova.magdalena@gmail.com

This work focuses on the ring of algebraic integers OK of totally real fields K and the
semigroup O+

K of totally positive integers. In this structure, we can define so-called
indecomposable integers, elements of O+

K which cannot be expressed as a sum of
two totally positive integers. It is also not hard to see that each element of O+

K can be
written as a sum of finitely many indecomposables. In connection to number systems,
we can express totally positive numbers using the indecomposable integers as a base.

In quadratic fields Q(
√

D), there were characterized all indecomposable integers
using the continued fraction of

√
D or

√
D−1
2 , see [14, 5]. In the second article, the

authors also found the upper bound on the norm of indecomposables, which was
refined in [7]. We do not have such a characterization for fields of higher degrees.
However, in [3], there was derived a bound on norms. This bound can be greatly
improved in the quadratic case [5, 10] and we will discuss some original results
related to these estimates.

The indecomposable integers are closely related to quadratic forms. By this, we
mean

Q(x1,x2, . . . ,xn) = ∑
1≤i≤ j≤n

ai jxix j

where ai j ∈ OK and x1,x2, . . . ,xn are variables. We focus on totally positive definite
forms, i.e., Q(γ1, . . . ,γn) is totally positive for all γi ∈ OK such that our n-tuples are
not equal to zero.

Our form is called universal if it represents each element of O+
K . For example,

x2
1 + x2

2 + x2
3 + x2

4 is universal over Z. Moreveover, in [16], there was proved that the
sum of any number of squares is universal only over Q and Q(

√
5). Other results

we can see in [4, 2, 12]. The indecomposable integers play an important role in the
study of universal quadratic forms, since they are difficult to represent and we often
use them as coefficients of our forms.

In biquadratic fields Q(
√

p,
√

q), we focus on the question whether the indecom-
posable integers from quadratic subfields remain indecomposable in Q(

√
p,
√

q).
The following theorem shows one of our results, which can be improved under cer-
tain conditions.
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Theorem 1. Let Q(
√

p,
√

q) be a biquadratic field, and let r = pq
gcd(p,q)2 . Set

δp =

{√
p if p≡ 2,3 (mod 4),√
p−1
2 if p≡ 1 (mod 4).

If
√

r >
√

pmax{ui; i odd, [u0,u1,u2, . . . ,us−1,us] is the continued fraction of δp},
then the indecomposable integers from Q(

√
p) are indecomposable in Q(

√
p,
√

q).

We will also discuss how we can use our knowledge of indecomposable integers
in biquadratic fields for the study of universal forms, in particular, we can show that
each universal form over Q(

√
6,
√

19) must have at least 6 variables.
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Lenticular Poles of the Dynamical Zeta Function of
the β -shift for Simple Parry Numbers Close to One

Denys Dutykh and Jean-Louis Verger-Gaugry∗

Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LAMA,
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Abstract. The distribution of the conjugates and the β−conjugates of simple PARRY’s num-
bers in SOLOMYAK’s fractal is revisited in the case where the base of numeration β > 1 is
close to one. We focus on the class B of polynomials of the type

f (x) = −1 + x + xn + xm1 + . . . + xms , s > 1, n > 2 ,

with m1 − n > n − 1, mq+1 − mq > n − 1, q = 1, 2, . . . , s − 1. They are polynomials sec-
tions of PARRY Upper functions associated with the dynamical zeta functions of the β−shift,
in the RÉNYI-PARRY dynamical system in base β . This work has two objectives: (i) to show
that there exists an asymptotic “reducibility Conjecture” for the polynomials of the class B in
the context of ODLYZKO–POONEN’s Conjecture, which provides an asymptotics on the type
of β−conjugates, this reducibility conjecture is empirically supported by extensive MONTE-
CARLO simulations, (ii) to establish new theorems of factorization of the polynomials of the
class B , by comparison with the general theorems of SCHINZEL related to the reducibility of
lacunary polynomials. In particular, in the search of reciprocal integer polynomials having a
small MAHLER measure by the PARRY Upper function we will show the existence of lenticuli
of roots, described by divergent series (asymptotic expansions à la POINCARÉ), in the region of
the cusp of SOLOMYAK’s fractal and indicate how they are related to the problem of LEHMER.
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AN EFFECTIVE CRITERION FOR PERIODICITY OF `-ADIC CONTINUED
FRACTIONS

FRANCESCO VENEZIANO
(JOINT WORK WITH L. CAPUANO AND U. ZANNIER)

Extended abstract

The theory of real continued fractions plays a central role in real Diophantine Approximation
for many different reasons, in particular because the convergents of the simple continued fraction
expansion of a real number α give the best rational approximations to α. Motivated by the same
type of questions, several authors (see for example Mahler [Mah34], Schneider [Sch70], Ruban
[Rub70], Bundschuch [Bun77], and Browkin [Bro78]) have generalized the theory of real continued
fractions to the `-adic case in various ways.

There is not a canonical way to define a continued fraction expansion in this context, as we lack
a canonical `-adic analog of the integral part. The `-adic process which is the most similar to the
classical real one was mentioned for the first time in one of the earliest papers on the subject by
Mahler [Mah34], and then studied accurately by Ruban [Rub70], who showed that these continued
fractions enjoy nice ergodic properties.

Ruban’s continued fractions will be the subject of this talk and they have many important
differences with respect to the classical real ones. First of all, while some rational numbers have a
finite expansion, this is not—unlike the real case— the only possible behaviour. For example, it is
easy to see that negative rational numbers cannot admit a terminating Ruban continued fraction.

It is however possible to decide when a given rational number admits a finite Ruban continued
fraction expansion and indeed our first result is the following:

Theorem 1. Let ` be a prime number and α ∈ Q be a rational number.
(i) The Ruban continued fraction expansion of α terminates if and only if all complete quotients

are non-negative; there is an algorithm to decide in a finite number of steps whether this
happens.

(ii) If the Ruban continued fraction expansion of α does not terminate, then it is periodic with
all partial quotients eventually equal to ` − `−1; in this case, the pre-periodic part can be
effectively computed.

Disregarding the computability aspect, the last part of this result has already appeared in the
literature, due to Laohakosol and, independently, to Wang (see [Lao85] and [Wan85]), but this
does not seem to be the case for either of the algorithmic conclusions, which apparently do not
follow directly from the proofs in [Lao85] and [Wan85]. For completeness, we have also included
our own (short) proof of the qualitative part, which is quite different.

The conclusion of Theorem 1 depends of course on the precise algorithm defining the continued
fraction expansion. In [Bro78], Browkin modified Ruban’s definition so that every rational number
has a finite `-adic continued fraction expansion.

Another natural question arises when one considers the periodicity of Ruban continued fractions.
In the classical real case, Lagrange’s theorem states that a real number has an infinite periodic
continued fraction if and only if it is quadratic irrational. We will show that this is not true in the
`-adic case and only some similarities can be recovered. For example we prove the following result:

Theorem 2. A Ruban continued fraction which is periodic represents an element of Q` which is
either a rational number or a real quadratic irrational over Q.

2010 Mathematics Subject Classification. 11J70, 11D88, 11Y16.
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No full analogue of Lagrange’s theorem holds in this setting as remarked by Ooto in [Oot17], and
the problem of deciding whether a quadratic (`-adic) irrational number has a periodic continued
fraction seems still open. For Browkin’s definition, some very partial sufficient conditions were
given in a series of papers by Bedocchi [Bed93]. Moreover, in [Bro01], Browkin wrote an algorithm
to generate the periodic continued fraction expansion of

√
∆ ∈ Q` \Q for some values of ∆ and `,

giving many numerical examples.
In this paper we investigate the periodicity of the `-adic Ruban continued fraction expansion of

quadratic irrational numbers, thus solving a problem posed by Laohakosol in [Lao85].
Our main result is the following:

Theorem 3. Let α ∈ Q` \Q be a quadratic irrational over Q. Then, the Ruban continued fraction
expansion of α is periodic if and only if there exists a unique real embedding j : Q(α) → R such
that the image of each complete quotient αn under the map j is positive.

Moreover, there is an effectively computable constant Nα such that, either ∃ n ≤ Nα such that
both real embeddings of αn are negative, and therefore the expansion is not periodic, or ∃ n1 <
n2 ≤ Nα such that αn1

= αn2
, hence the expansion is periodic.

In particular, both the preperiodic and the periodic part of a periodic expansion can be computed
with a finite algorithm.

I summarise here a simplified version of the explicit bounds that we prove.
• If the expansion of a rational α is finite, then its length is at most logH(α)

log ` + 2;
• If the expansion of a rational α is periodic, then the length of the preperiodic part is at

most 32`H(α)2;
• If α = b+

√
∆

c , with b, c,∆ integers, ∆ > 0 not a square, then the constant Nα in Theorem 3
can be bounded by bc+ 2(c

√
∆ + 1)3.

It is also interesting to study how the qualitative behaviour of the expansion varies with the
prime ` for fixed rational or irrational quadratic numbers. We show that finiteness of the expansion
(for rational numbers) and periodicity (for irrational quadratic numbers) are "unlikely" behaviours
which occur for at most finitely many primes.

This extended abstract has been adapted from the introduction of the full paper, which is
available on ArXiv at the address https://arxiv.org/abs/1801.06214.
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PERIODIC REPRESENTATIONS IN SALEM BASES

TOMÁŠ VÁVRA

This contribution is a continuation of author’s work on periodic representations
in number systems with algebraic bases. By the results of Baker, Kala, Masáková,
Pelantová, and Vávra, we know that for an algebraic base β without Galois con-
jugates on the unit circle there is a finite alphabet A ⊂ Z such that each element
of Q(β) admits an eventually periodic (β,A)-representation. That is, a representa-
tion of the form

∑+∞
i=−k aiβ

−i, ai ∈ A with the digit sequence {ai} being eventually
periodic.

We will show that the mentioned result can be strengthened to cover all the
algebraic bases, in particular also the Salem numbers, for which this problem was
unapproachable by the previous method. Moreover, we discuss whether the rep-
resentations constructed by our method satisfy the weak-greedy condition, i.e.,
whether the leading power of the representation is proportional to the modulus of
the represented number. We come to the conclusion that the weak-greedy condition
is satisfied if and only if |β| is a Pisot or a Salem number, or β is a complex Pisot
or a complex Salem number.

Furthemore, we study the decideability whether a pair (β,A) satisfies the period-
icity condition. We show that the periodicity condition can be equivalently stated
as a topological property of the attractor of certain iterated function system, or as
a geometric property of the spectrum of β with the alphabet A.

Department of Algebra, Charles University, Sokolovská 83, 175 86 Praha 8, Czech
Republic
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TOPOLOGY OF A CLASS OF SELF-AFFINE TILES

JÖRG THUSWALDNER AND SHU-QIN ZHANG (SPEAKER)

Abstract. Let T = T (M,D) be an integral self-affine tile (Z3-tile) in R3

generated by an expanding matrix

M =




0 0 −C
1 0 −B
0 1 −A


 and the digit set D = {




0
0

0


 ,




1
0

0


 , . . . ,



C − 1

0

0


},

where 1 ≤ A ≤ B < C. To study the topological properties of a Z3-tile,
the neighbor set plays an important role. We have the following result about

neighbor set. For 1 ≤ A < B < C, the Z3-tile has 14-neighbors if and only if

one of the following conditions satisfies.
(1). B ≥ 2A− 1 and C ≥ 2(B −A) + 2;

(2). B < 2A− 1 and C ≥ A + B − 2.

In particular, if A = B = 1, it has 20 neighbors for all C ≥ 2. Moreover,
we will also show when the boundaries of the self-affine tiles are topological

2-spheres.

Chair of Mathematics and Statistics, University of Leoben, Franz-Josef-Strasse 18,
A-8700 Leoben, Austria
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