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Observation 1

Congruence
The Rauzy fractals induced by the substitutions

σ : 1 7→ 1211, 2 7→ 311, 3 7→ 1 and
σ′ : 1 7→ 1112, 2 7→ 113, 3 7→ 1

over the alphabet A = {1, 2, 3} are congruent (that is they
differ by an affine transformation only).
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Observation 2

Symmetry (Sellami, Sirvent: 2011, 2012, 2016)

The (original) Rauzy fractal induced by the substitutions

σ : 1 7→ 12, 2 7→ 13, 3 7→ 1

(over the alphabet A = {1, 2, 3}) is central-symmetric with
respect to some point c.
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Problem

Some Questions
Which conditions ensure that Rauzy fractals are congruent?

Which conditions ensure that a Rauzy fractal is central
symmetric?
What is the centre of symmetry?
Are the conditions necessary?
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Definitions

Notations
We denote
A finite set (alphabet) (here A = {1, 2, . . . ,m})
A∗ set of finite words over A
ε empty word
X̃ mirror-word of X ∈ A∗
|X |y number of occurrences of the letter y ∈ A within the

word X ∈ A∗
l(X ) “Ablianisation” of X ∈ A∗, i.e.

l(X ) = (|X |1, . . . , |X |m) ∈ Zm
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Some linear algebra

Substitution and induced subspaces
Let σ be a primitive unimodular Pisot substitution over A, i.e.
an endomorphism A∗ −→ A∗ such that
Mσ := (|σ(x)|y )1≤x ,y≤m is a primitive matrix; the dominant
real eigenvalue θ > 1 of Mσ is a Pisot unit. Let d + 1 be the
algebraic degree of θ. If d + 1 = m then σ is irreducible. We
define
Eu subspace spanned by the right eigenvector associated

with θ (Eu ∼= R).
E s subspace spanned by the right eigenvectors associated

with the Galois conjugates different from θ (Eu ∼=
Rd).

E c subspace spanned by the right eigenvectors associated
with the remaining eigenvalues (Eu ∼= Rm−d−1).

π projection of Rm onto E s (along E s and E c)
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Induced language and Rauzy fractal

Definition

Let (xj)j≥1 ∈ AN be a periodic word (that is
σn(x1)σ

n(x2)σ
n(x3) · · · = (xj)j≥1 for some n ≥ 1).

The language Lσ induced by σ is the subset of words over
A that appear in (xj)j≥1, i.e.

Lσ = {X ∈ A∗ : ∃1 ≤ i ≤ j : X = xi · · · xj}.

The Rauzy fractal associated with σ is the compact set

Rσ := {π ◦ l(x1 · · · xn) : n ∈ N} ⊂ E s .
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On congruence
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A general result

Theorem
Let σ, σ′ be irreducible primitive unimodular Pisot substitutions
over the same alphabet A. If Lσ = Lσ′ then Rσ and Rσ′ are
congruent.

Remark
For reducible substitutions this does not hold in general. For
example, the substitutions σ1, σ2, σ3 over A = {1, 2, 3} induce
the same language, but . . .

Substitution Rauzy fractal

σ1 : 1 7→ 131, 2 7→ 312, 3 7→ 2 -2 -1 0 1 2

σ2 : 1 7→ 13, 2 7→ 1312, 3 7→ 12 -2 -1 0 1 2

σ3 : 1 7→ 12, 2 7→ 1313, 3 7→ 13 -2 -1 0 1 2
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Conjugacy

Definition
Two substitutions σ, σ′ over A are conjugated (written σ ∼ σ′)
if there exists a word X ∈ A∗ such that for each y ∈ A we have
Xσ(y) = σ′(y)X (or for each y ∈ A we have
σ(y)X = Xσ′(y)).

Lemma
If two substitutions σ, σ′ over A are conjugated then Lσ = Lσ′

and Mσ = Mσ′ .

Theorem
Suppose that σ ∼ σ′ such that Xσ(y) = σ′(y)X holds for all
y ∈ A. Then Rσ′ = Rσ + t with t =

∑
n≥0 f

n ◦ π ◦ l(X ) ∈ E s ,
where f is the restriction of the action of Mσ on E s (especially,
f is a contraction).
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Example

Our initial example
The Rauzy fractals induced by the substitutions

σ : 1 7→ 1211, 2 7→ 311, 3 7→ 1 and
σ′ : 1 7→ 1112, 2 7→ 113, 3 7→ 1

over the alphabet A = {1, 2, 3} differ by a translation only since
σ ∼ σ′ (we have 11σ(y) = σ′(y)11 for all y ∈ A. We can easily
calculate the translation vector t.
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On symmetry
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A general result

Definition
The language Lσ induced by a primitive substitution σ is called
mirror-invariant if for each X ∈ Lσ we have X̃ ∈ Lσ.

Theorem
Let σ be a primitive unimodular Pisot substitution such that the
language Lσ is mirror-invariant. Then the Rauzy fractal Rσ is
central symmetric (with respect to some centre of symmetry c).

Example

The (reducible) substitution
σ : 1 7→ 23, 2 7→ 23, 3 7→ 45, 4 7→ 23, 5 7→ 1 over
A = {1, 2, 3, 4, 5} induces the (original) Rauzy fractal which is
central symmetric but Lσ is not mirror-invariant (the words of
length 2 in Lσ are given by {12, 23, 31, 34, 45, 52}).
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Necessity

Definition
A primitive unimodular Pisot substitution σ is said to have the
tiling property if Rσ induces a proper lattice tiling with respect
to the lattice
{π(z1, . . . , zm) : (z1, . . . , zm) ∈ Zm, z1 + · · ·+ zm = 0}.

Conjecture (Pisot conjecture)

Each irreducible primitive unimodular Pisot substitution has the
tiling property.

Theorem
Let σ be a primitive unimodular Pisot substitution with central
symmetric Rauzy fractal Rσ that possesses the tiling property.
Then the language Lσ is mirror-invariant.



Symmetric
Rauzy
fractals

Paul Surer

Motivation

Construction

Congruence

Symmetry

Problems

Necessity

Definition
A primitive unimodular Pisot substitution σ is said to have the
tiling property if Rσ induces a proper lattice tiling with respect
to the lattice
{π(z1, . . . , zm) : (z1, . . . , zm) ∈ Zm, z1 + · · ·+ zm = 0}.

Conjecture (Pisot conjecture)

Each irreducible primitive unimodular Pisot substitution has the
tiling property.

Theorem
Let σ be a primitive unimodular Pisot substitution with central
symmetric Rauzy fractal Rσ that possesses the tiling property.
Then the language Lσ is mirror-invariant.



Symmetric
Rauzy
fractals

Paul Surer

Motivation

Construction

Congruence

Symmetry

Problems

Necessity

Definition
A primitive unimodular Pisot substitution σ is said to have the
tiling property if Rσ induces a proper lattice tiling with respect
to the lattice
{π(z1, . . . , zm) : (z1, . . . , zm) ∈ Zm, z1 + · · ·+ zm = 0}.

Conjecture (Pisot conjecture)

Each irreducible primitive unimodular Pisot substitution has the
tiling property.

Theorem
Let σ be a primitive unimodular Pisot substitution with central
symmetric Rauzy fractal Rσ that possesses the tiling property.
Then the language Lσ is mirror-invariant.



Symmetric
Rauzy
fractals

Paul Surer

Motivation

Construction

Congruence

Symmetry

Problems

Substitutions that are conjugate to their mirror
substitution

Definition
For a substitution σ we define the mirror-substitution σ̃ by
σ̃(y) := σ̃(y) for each y ∈ A.

Theorem
Let σ be a primitive unimodular Pisot substitution such that
σ(y)X = X σ̃(y) holds for all y ∈ A. Then the Rauzy fractal
Rσ is central symmetric with respect to
c := 1

2
∑

n≥0 f
n ◦ π ◦ l(X ).
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Arnoux-Rauzy substitutions

Definition
Let

σ1 :1 7→ 1, 2 7→ 12, 3 7→ 13
σ2 :1 7→ 21, 2 7→ 2, 3 7→ 23
σ3 :1 7→ 31, 2 7→ 32, 3 7→ 3.

Each composition that includes σ1, σ2 and σ3 at least once is a
primitive, irreducible, unimodular Pisot substitution.

Theorem
If σ = σi1 ◦ · · · ◦ σin then σ(y)X = X σ̃(y) for all y ∈ {1, 2, 3}
with

X = σi1(σi2(σi3(· · · (σin−1(in)in−1) · · · )i3)i2)i1.
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Example

A specific Arnoux-Rauzy substitution

Let σ = σ2 ◦ σ1 ◦ σ2 ◦ σ2 ◦ σ3. Then for each y ∈ {1, 2, 3} we
have σ(y)X = X σ̃(y) with

X = σ2(σ1(σ2(σ2(3)2)2)1)2 = 2122122123212212212.

Therefore, Rσ is central symmetric with respect to
c := 1

2
∑

n≥0 f
n ◦ π ◦ l(X ).

c

!1.0 !0.5 0.0 0.5 1.0

!1.0

!0.5

0.0

0.5
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Problems and open
Questions



Symmetric
Rauzy
fractals

Paul Surer

Motivation

Construction

Congruence

Symmetry

Problems

The class P-conjecture

Definition
The language Lσ induced by a primitive substitution σ is called
palindromic if it contains infinitely many palindromes.

Conjecture (Hof-Knill-Simon: 1995, Labbé: 2014,
Harju-Vesti-Zamboni: 2015)

Let σ be a primitive substitution such that Lσ is palindromic.
Then there exist a primitive substitution σ′ with σ′ ∼ σ̃′ (the
class P) such that Lσ = Lσ′ .

Remark
The conjecture is solved for the 2-letter case (Tan: 2007) and
for a class of substitutions related with interval exchange
transformations (Masáková-Pelantová-Starosta: 2017).
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The class P-conjecture in context with symmetric
Rauzy fractals

The example from above

The substitutions σ1, σ2, σ3 over A = {1, 2, 3} induce the same
language which is palindromic, but only σ3 is conjugate to its
mirror-substitution..

Substitution Rauzy fractal

σ1 : 1 7→ 131, 2 7→ 312, 3 7→ 2 -2 -1 0 1 2

σ2 : 1 7→ 13, 2 7→ 1312, 3 7→ 12 -2 -1 0 1 2

σ3 : 1 7→ 12, 2 7→ 1313, 3 7→ 13 -2 -1 0 1 2
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Palindomicity vs. mirror-invariance

Proposition
A palindomic language is always mirror invariant.

Question
Is there a primitive substitution σ such that Lσ is
mirror-invariant but not palindromic?

Partial answer
In the two-letter case palindomicity and mirror-invariance are
equivalent (Tan: 2007).
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Thanks

Thank you for your
attention
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