Symmetric and congruent Rauzy fractals

Paul Surer

Universität für Bodenkultur
Institut für Mathematik
1180 Vienna - AUSTRIA

Paris, May 2018

based on a joint-research with Klaus Scheicher and Víctor Sirvent
Motivation
Observation 1

Congruence

The Rauzy fractals induced by the substitutions

\[\sigma : 1 \mapsto 1211, 2 \mapsto 311, 3 \mapsto 1 \quad \text{and} \quad \sigma' : 1 \mapsto 1112, 2 \mapsto 113, 3 \mapsto 1 \]

over the alphabet \(A = \{1, 2, 3\} \) are congruent (that is they differ by an affine transformation only).

The (original) Rauzy fractal induced by the substitutions

\[\sigma : 1 \mapsto 12, 2 \mapsto 13, 3 \mapsto 1 \]

(over the alphabet \(A = \{1, 2, 3\} \)) is central-symmetric with respect to some point \(c \).
Some Questions

- Which conditions ensure that Rauzy fractals are congruent?
Problem

Some Questions

- Which conditions ensure that Rauzy fractals are congruent?
- Which conditions ensure that a Rauzy fractal is central symmetric?
Symmetric Rauzy fractals

Paul Surer

Motivation
Construction
Congruence
Symmetry
Problems

Problem

Some Questions

- Which conditions ensure that Rauzy fractals are congruent?
- Which conditions ensure that a Rauzy fractal is central symmetric?
- What is the centre of symmetry?
Problem

Some Questions

- Which conditions ensure that Rauzy fractals are congruent?
- Which conditions ensure that a Rauzy fractal is central symmetric?
- What is the centre of symmetry?
- Are the conditions necessary?
Construction of the Rauzy fractal
Definitions

Notations

We denote
- \mathcal{A} finite set (alphabet) (here $\mathcal{A} = \{1, 2, \ldots, m\}$)
- \mathcal{A}^* set of finite words over \mathcal{A}
- ε empty word
- \tilde{X} mirror-word of $X \in \mathcal{A}^*$
- $|X|_y$ number of occurrences of the letter $y \in \mathcal{A}$ within the word $X \in \mathcal{A}^*$
- $l(X)$ “Abelianisation” of $X \in \mathcal{A}^*$, i.e.
 $l(X) = (|X|_1, \ldots, |X|_m) \in \mathbb{Z}^m$
Substitution and induced subspaces

Let σ be a primitive unimodular Pisot substitution over \mathcal{A}, i.e. an endomorphism $\mathcal{A}^* \to \mathcal{A}^*$ such that $M_\sigma := (|\sigma(x)|_y)_{1 \leq x, y \leq m}$ is a primitive matrix; the dominant real eigenvalue $\theta > 1$ of M_σ is a Pisot unit. Let $d + 1$ be the algebraic degree of θ. If $d + 1 = m$ then σ is irreducible. We define

- E^u subspace spanned by the right eigenvector associated with θ ($E^u \cong \mathbb{R}$).
- E^s subspace spanned by the right eigenvectors associated with the Galois conjugates different from θ ($E^u \cong \mathbb{R}^d$).
- E^c subspace spanned by the right eigenvectors associated with the remaining eigenvalues ($E^u \cong \mathbb{R}^{m-d-1}$).
- π projection of \mathbb{R}^m onto E^s (along E^s and E^c).
Induced language and Rauzy fractal

Definition

Let \((x_j)_{j \geq 1} \in \mathcal{A}^\mathbb{N}\) be a periodic word (that is \(\sigma^n(x_1)\sigma^n(x_2)\sigma^n(x_3) \cdots = (x_j)_{j \geq 1}\) for some \(n \geq 1\)).

The language \(\mathcal{L}_\sigma\) induced by \(\sigma\) is the subset of words over \(\mathcal{A}\) that appear in \((x_j)_{j \geq 1}\), i.e.

\[
\mathcal{L}_\sigma = \{X \in \mathcal{A}^* : \exists 1 \leq i \leq j : X = x_i \cdots x_j\}.
\]
Induced language and Rauzy fractal

Definition

Let \((x_j)_{j \geq 1} \in A^\mathbb{N}\) be a periodic word (that is \(\sigma^n(x_1)\sigma^n(x_2)\sigma^n(x_3) \cdots = (x_j)_{j \geq 1}\) for some \(n \geq 1\)).

- The language \(\mathcal{L}_\sigma\) induced by \(\sigma\) is the subset of words over \(A\) that appear in \((x_j)_{j \geq 1}\), i.e.

\[
\mathcal{L}_\sigma = \{X \in A^*: \exists 1 \leq i \leq j: X = x_i \cdots x_j\}.
\]

- The Rauzy fractal associated with \(\sigma\) is the compact set

\[
\mathcal{R}_\sigma := \{\pi \circ \mathcal{I}(x_1 \cdots x_n) : n \in \mathbb{N}\} \subset E^s.
\]
On congruence
A general result

Theorem

Let σ, σ' be irreducible primitive unimodular Pisot substitutions over the same alphabet A. If $\mathcal{L}_\sigma = \mathcal{L}_{\sigma'}$ then \mathcal{R}_σ and $\mathcal{R}_{\sigma'}$ are congruent.
A general result

Theorem

Let σ, σ' be irreducible primitive unimodular Pisot substitutions over the same alphabet A. If $\mathcal{L}_\sigma = \mathcal{L}_{\sigma'}$ then R_σ and $R_{\sigma'}$ are congruent.

Remark

For reducible substitutions this does not hold in general. For example, the substitutions $\sigma_1, \sigma_2, \sigma_3$ over $A = \{1, 2, 3\}$ induce the same language, but ...
Conjugacy

Definition

Two substitutions σ, σ' over \mathcal{A} are *conjugated* (written $\sigma \sim \sigma'$) if there exists a word $X \in \mathcal{A}^*$ such that for each $y \in \mathcal{A}$ we have $X\sigma(y) = \sigma'(y)X$ (or for each $y \in \mathcal{A}$ we have $\sigma(y)X = X\sigma'(y)$).
Conjugacy

Definition
Two substitutions σ, σ' over A are conjugated (written $\sigma \sim \sigma'$) if there exists a word $X \in A^*$ such that for each $y \in A$ we have $X\sigma(y) = \sigma'(y)X$ (or for each $y \in A$ we have $\sigma(y)X = X\sigma'(y)$).

Lemma
If two substitutions σ, σ' over A are conjugated then $L_\sigma = L_{\sigma'}$ and $M_\sigma = M_{\sigma'}$.
Conjugacy

Definition

Two substitutions σ, σ' over A are conjugated (written $\sigma \sim \sigma'$) if there exists a word $X \in A^*$ such that for each $y \in A$ we have $X\sigma(y) = \sigma'(y)X$ (or for each $y \in A$ we have $\sigma(y)X = X\sigma'(y)$).

Lemma

If two substitutions σ, σ' over A are conjugated then $\mathcal{L}_\sigma = \mathcal{L}_{\sigma'}$ and $M_\sigma = M_{\sigma'}$.

Theorem

Suppose that $\sigma \sim \sigma'$ such that $X\sigma(y) = \sigma'(y)X$ holds for all $y \in A$. Then $R_{\sigma'} = R_\sigma + t$ with $t = \sum_{n \geq 0} f^n \circ \pi \circ l(X) \in E^s$, where f is the restriction of the action of M_σ on E^s (especially, f is a contraction).
Example

Our initial example

The Rauzy fractals induced by the substitutions

\[\sigma : 1 \mapsto 1211, 2 \mapsto 311, 3 \mapsto 1 \]
and

\[\sigma' : 1 \mapsto 1112, 2 \mapsto 113, 3 \mapsto 1 \]

over the alphabet \(A = \{1, 2, 3\} \) differ by a translation only since \(\sigma \sim \sigma' \) (we have \(11\sigma(y) = \sigma'(y)11 \) for all \(y \in A \)). We can easily calculate the translation vector \(t \).
On symmetry
A general result

Definition
The language \mathcal{L}_σ induced by a primitive substitution σ is called *mirror-invariant* if for each $X \in \mathcal{L}_\sigma$ we have $\tilde{X} \in \mathcal{L}_\sigma$.

Theorem
Let σ be a primitive unimodular Pisot substitution such that the language \mathcal{L}_σ is mirror-invariant. Then the Rauzy fractal R_σ is central symmetric (with respect to some centre of symmetry c).

Example
The (reducible) substitution $\sigma: 1 \mapsto 23, 2 \mapsto 23, 3 \mapsto 45, 4 \mapsto 23, 5 \mapsto 1$ over $A = \{1, 2, 3, 4, 5\}$ induces the (original) Rauzy fractal which is central symmetric but \mathcal{L}_σ is not mirror-invariant (the words of length 2 in \mathcal{L}_σ are given by $\{12, 23, 31, 34, 45, 52\}$).
A general result

Definition

The language \(L_\sigma \) induced by a primitive substitution \(\sigma \) is called \textit{mirror-invariant} if for each \(X \in L_\sigma \) we have \(\tilde{X} \in L_\sigma \).

Theorem

Let \(\sigma \) be a primitive unimodular Pisot substitution such that the language \(L_\sigma \) is mirror-invariant. Then the Rauzy fractal \(R_\sigma \) is central symmetric (with respect to some centre of symmetry \(c \)).
Definition

The language \mathcal{L}_σ induced by a primitive substitution σ is called *mirror-invariant* if for each $X \in \mathcal{L}_\sigma$ we have $\tilde{X} \in \mathcal{L}_\sigma$.

Theorem

Let σ be a primitive unimodular Pisot substitution such that the language \mathcal{L}_σ is mirror-invariant. Then the Rauzy fractal \mathcal{R}_σ is central symmetric (with respect to some centre of symmetry c).

Example

The (reducible) substitution

$\sigma : 1 \mapsto 23, 2 \mapsto 23, 3 \mapsto 45, 4 \mapsto 23, 5 \mapsto 1$ over

$\mathcal{A} = \{1, 2, 3, 4, 5\}$ induces the (original) Rauzy fractal which is central symmetric but \mathcal{L}_σ is not mirror-invariant (the words of length 2 in \mathcal{L}_σ are given by $\{12, 23, 31, 34, 45, 52\}$).
Necessity

Definition

A primitive unimodular Pisot substitution σ is said to have the tiling property if R_σ induces a proper lattice tiling with respect to the lattice

$$\{\pi(z_1, \ldots, z_m) : (z_1, \ldots, z_m) \in \mathbb{Z}^m, z_1 + \cdots + z_m = 0\}.$$
Necessity

Definition

A primitive unimodular Pisot substitution σ is said to have the tiling property if R_σ induces a proper lattice tiling with respect to the lattice

$$\{\pi(z_1, \ldots, z_m) : (z_1, \ldots, z_m) \in \mathbb{Z}^m, z_1 + \cdots + z_m = 0\}.$$

Conjecture (Pisot conjecture)

Each irreducible primitive unimodular Pisot substitution has the tiling property.
Necessity

Definition
A primitive unimodular Pisot substitution σ is said to have the tiling property if R_σ induces a proper lattice tiling with respect to the lattice
$$\{\pi(z_1, \ldots, z_m) : (z_1, \ldots, z_m) \in \mathbb{Z}^m, z_1 + \cdots + z_m = 0\}.$$

Conjecture (Pisot conjecture)
Each irreducible primitive unimodular Pisot substitution has the tiling property.

Theorem
Let σ be a primitive unimodular Pisot substitution with central symmetric Rauzy fractal R_σ that possesses the tiling property. Then the language \mathcal{L}_σ is mirror-invariant.
Symmetric Rauzy fractals
Paul Surer
Motivation
Construction
Congruence
Symmetry
Problems

Substitutions that are conjugate to their mirror substitution

Definition

For a substitution σ we define the *mirror-substitution* $\tilde{\sigma}$ by $\tilde{\sigma}(y) := \sigma(y)$ for each $y \in A$.

Theorem

Let σ be a primitive unimodular Pisot substitution such that $\sigma(y) = X = \tilde{\sigma}(y)$ holds for all $y \in A$. Then the Rauzy fractal R_{σ} is central symmetric with respect to $c := \frac{1}{2} \sum_{n \geq 0} f_n \circ \pi \circ l(X)$.
Substitutions that are conjugate to their mirror substitution

Definition
For a substitution σ we define the *mirror-substitution* $\tilde{\sigma}$ by
$$\tilde{\sigma}(y) := \sigma(y)$$
for each $y \in \mathcal{A}$.

Theorem
Let σ be a primitive unimodular Pisot substitution such that
$$\sigma(y)X = X\tilde{\sigma}(y)$$
holds for all $y \in \mathcal{A}$. Then the Rauzy fractal \mathcal{R}_σ is central symmetric with respect to
$$c := \frac{1}{2} \sum_{n \geq 0} f^n \circ \pi \circ \mathbf{l}(X).$$
Arnoux-Rauzy substitutions

Definition

Let

\[\sigma_1 : 1 \mapsto 1, 2 \mapsto 12, 3 \mapsto 13 \]
\[\sigma_2 : 1 \mapsto 21, 2 \mapsto 2, 3 \mapsto 23 \]
\[\sigma_3 : 1 \mapsto 31, 2 \mapsto 32, 3 \mapsto 3. \]

Each composition that includes \(\sigma_1, \sigma_2 \) and \(\sigma_3 \) at least once is a primitive, irreducible, unimodular Pisot substitution.
Arnoux-Rauzy substitutions

Definition

Let

\[
\begin{align*}
\sigma_1 &: 1 \mapsto 1, 2 \mapsto 12, 3 \mapsto 13 \\
\sigma_2 &: 1 \mapsto 21, 2 \mapsto 2, 3 \mapsto 23 \\
\sigma_3 &: 1 \mapsto 31, 2 \mapsto 32, 3 \mapsto 3.
\end{align*}
\]

Each composition that includes \(\sigma_1\), \(\sigma_2\) and \(\sigma_3\) at least once is a primitive, irreducible, unimodular Pisot substitution.

Theorem

If \(\sigma = \sigma_{i_1} \circ \cdots \circ \sigma_{i_n}\) then \(\sigma(y)X = X\tilde{\sigma}(y)\) for all \(y \in \{1, 2, 3\}\) with

\[
X = \sigma_{i_1}(\sigma_{i_2}(\sigma_{i_3}(...(\sigma_{i_{n-1}}(i_n)i_{n-1})\cdots)i_3)i_2)i_1.
\]
A specific Arnoux-Rauzy substitution

Let $\sigma = \sigma_2 \circ \sigma_1 \circ \sigma_2 \circ \sigma_2 \circ \sigma_3$. Then for each $y \in \{1, 2, 3\}$ we have $\sigma(y)X = X\tilde{\sigma}(y)$ with

$$X = \sigma_2(\sigma_1(\sigma_2(3)2)2)1)2 = 2122122123212212212.$$

Therefore, \mathcal{R}_σ is central symmetric with respect to $c := \frac{1}{2} \sum_{n \geq 0} f^n \circ \pi \circ I(X)$.

![Graph of Rauzy fractal with point c]
Problems and open Questions
The class \mathcal{P}-conjecture

Definition

The language \mathcal{L}_σ induced by a primitive substitution σ is called *palindromic* if it contains infinitely many palindromes.
The class P-conjecture

Definition

The language L_σ induced by a primitive substitution σ is called **palindromic** if it contains infinitely many palindromes.

Let σ be a primitive substitution such that L_σ is palindromic. Then there exist a primitive substitution σ' with $\sigma' \sim \tilde{\sigma}'$ (the class P) such that $L_\sigma = L_{\sigma'}$.

Remark: The conjecture is solved for the 2-letter case (Tan: 2007) and for a class of substitutions related with interval exchange transformations (Masáková-Pelantová-Starosta: 2017).
The class \mathcal{P}-conjecture

Definition
The language \mathcal{L}_σ induced by a primitive substitution σ is called *palindromic* if it contains infinitely many palindromes.

Let σ be a primitive substitution such that \mathcal{L}_σ is palindromic. Then there exist a primitive substitution σ' with $\sigma' \sim \tilde{\sigma}'$ (the class \mathcal{P}) such that $\mathcal{L}_\sigma = \mathcal{L}_{\sigma'}$.

Remark
The conjecture is solved for the 2-letter case (Tan: 2007) and for a class of substitutions related with interval exchange transformations (Masáková-Pelantová-Starosta: 2017).
The class \mathcal{P}-conjecture in context with symmetric Rauzy fractals

The example from above

The substitutions $\sigma_1, \sigma_2, \sigma_3$ over $A = \{1, 2, 3\}$ induce the same language which is palindromic, but only σ_3 is conjugate to its mirror-substitution.

<table>
<thead>
<tr>
<th>Substitution</th>
<th>Rauzy fractal</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma_1 : 1 \mapsto 131, 2 \mapsto 312, 3 \mapsto 2$</td>
<td>![Rauzy fractal for σ_1]</td>
</tr>
<tr>
<td>$\sigma_2 : 1 \mapsto 13, 2 \mapsto 1312, 3 \mapsto 12$</td>
<td>![Rauzy fractal for σ_2]</td>
</tr>
<tr>
<td>$\sigma_3 : 1 \mapsto 12, 2 \mapsto 1313, 3 \mapsto 13$</td>
<td>![Rauzy fractal for σ_3]</td>
</tr>
</tbody>
</table>
Proposition

A palindomic language is always mirror invariant.
Proposition
A palindomic language is always mirror invariant.

Question
Is there a primitive substitution σ such that \mathcal{L}_σ is mirror-invariant but not palindromic?
Palindomicity vs. mirror-invariance

Proposition
A palindomic language is always mirror invariant.

Question
Is there a primitive substitution σ such that L_σ is mirror-invariant but not palindromic?

Partial answer
In the two-letter case palindomicity and mirror-invariance are equivalent (Tan: 2007).
Thank you for your attention